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These notes develop the theories of Green’s functions at an elementary level. Section A introduces the method of path integral
(sum over all paths) via the propagators for a system of free particles and the harmonic oscillator. In Section B, we give an extra
example on using the sum rule method combined with the Green’s function to estimate the ground state energy of a 2D harmonic
oscillator. Section C is devoted to the density matrix and in Section D we give the first application of using imaginary-time formalism,
i.e., simulating the path integral and estimating the ground state energy of a given system. Section E discusses the second example
of imaginary-time formalism, namely the thermal effects on a scalar field. Section F introduces the basis of the response functions,
correlation functions as well as their inner-connection, the fluctuation–dissipation theorem, here the importance of the retarded
response function is emphasized. Section G is on the general theories of (equilibrium) Green’s functions, and the spectral function is
discussed in some details. In Section H we introduce the concept of spectroscopy which is strongly related to the spectral function, the
nucleon momentum distribution in finite nuclei and nuclear matter is also discussed. The last four sections introduce the very basis
of non-equilibrium real-time Green’s functions (no concept of temperature), their relations with the imaginary-time formalism by
analytical continuation, and the closely-related transport equations (conceptual). Exercises and examples are scattered through the
notes to help understand the material. A few sections with “∗” could be omitted without influencing the main development (however,
certain important concepts do appear in such sections such as the imaginary-time and the Matsubara frequency). [DRAFT]
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A Propagators: Free Particle and Harmonic Oscillator

RELEVANT REFERENCES:

• R. Feynman, Quantum Mechanics and Path Integrals, Dover Press, 2010, Chapters 2 and 3.
• A. Zee, Quantum Field Theory in a Nutshell, 2nd Edition, Princeton University Press, 2010, Part I.
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Fig. A: Infinite paths from S to D.

By using the path integral formulation, one can do relevant
quantum mechanical calculations classically. The double-slit exper-
iment tells that the probability amplitude at the detector D is

Amplitude(D)= ∑
j=1,2

Amplitude(S → A j → D). (1.1)

If there are two walls with one having two slits A j and the other
three slits Bk, then the probability amplitude observed at D is

Amplitude(D)=∑
j,k

Amplitude(S → A j → Bk → D). (1.2)

A natural question is: If the number of the walls approaches to in-
finity and in the meanwhile each wall has an infinite number of slits, what is the probability amplitude? In fact, this
corresponds to the situation that there is no slits and walls between the source S and the detector D, and the probability
amplitude is given by

Amplitude(D)= ∑
all paths (S → D)

Amplitude(S →···→ D), (1.3)

see FIG. A. Our task is to compute the sum of these terms.
Assume that the initial and final coordinates of the system are qi and qf, respectively, and the propagation time is
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T, then the sum of the probability amplitude is given by

〈qf|e−iHT/ħ|qi〉, (1.4)

here 〈qf|e−iHT/ħ represents the time evolution of〈qf|, and when inner-multiplied with |qi〉 = |qi〉(t = 0), one obtains the
transition probability (propagator or its Green function). Decomposing the time as δ= T/N, then

〈qf|e−iHT/ħ|qi〉 = 〈qf| e−iHδt/ħe−iHδt/ħ · · · e−iHδt/ħ︸                             ︷︷                             ︸
N times

|qi〉. (1.5)

Using the complete relation of the coordinate namely
∫

dq|q〉〈q| = 1, one can rewrite the probability amplitude as

〈qf|e−iHT/ħ|qi〉 =
(

N−1∏
j=1

∫
dq j

)
〈qf|e−iHδt/ħ|qN−1〉 · · · 〈q2|e−iHδt/ħ|q1〉〈q1|e−iHδt/ħ|qi〉. (1.6)

The task is to compute the scattering element 〈q j+1|e−iHδt/ħ|q j〉. For the free particle, the energy is given by H =
p2/2m, and the eigenvalue equation for the momentum operator p is p|p〉 = p|p〉, with the eigenvector in the coordinate
representation given by 〈p|q〉 = (2πħ)−1/2e−ipq/ħ. Thus 〈q|p〉 = (2πħ)−1/2eipq/ħ, then according to the complete relation∫

dp|p〉〈p| = 1, one obtains,

〈q j+1|e−iHδt/ħ|q j〉 =
∫

dp〈q j+1|exp
(
− ip2δt

2mħ
)
|p〉〈p|q j〉 = 1

2πħ

√
−i2πmħ

δt
exp

[
iδtm
2ħ

( q j+1 − q j

δt

)2]
. (1.7)

Multiplying all these elements gives

〈qf|e−iHT/ħ|qi〉 =
( m
2πħiδt

)N/2 ×
N−1∏
j=1

∫
dq j exp

[
imδt
2ħ

N−1∑
j=1

( q j+1 − q j

δt

)2
]

, (1.8)

where q0 = qi, qN = qf. Since,

[ q j+1 − q j

δt

]2
→ q̇2,

N−1∑
j=1

→
∫ T

0
dt,

∫
Dq = lim

N→∞

( m
2πħiδt

)N/2 N−1∏
j=1

∫
dq j, (1.9)

we can rewrite the amplitude in the form,

〈qf|e−iHT/ħ|qi〉 =
∫
Dqexp

(
i
ħ

∫ T

0
dt

1
2

mq̇2
)
, (1.10)

which is the path integral representation of the amplitude for free particle. For system with potential(s), the path
integral is generalized to

〈qf|e−iHT/ħ|qi〉 =
∫
Dqexp

[
i
ħ

∫ T

0
dt

[
1
2

mq̇2 −U(q)
]]

. (1.11)

EXERCISE 1: Finish the Gaussian integration in (1.7).
EXERCISE 2: Prove the relation (1.11).
EXERCISE 3: Derive the classical action for harmonic oscillator.

Slightly rewriting (1.10), one obtains the amplitude for free particle as

〈qf|e−iHT/ħ|qi〉 =
√

m
2πħiT

×exp
[

i
ħ

m(qf − qi)2

2T

]
. (1.12)

The quantity appearing in the exponential is the classical action iScl/ħ with Scl =
∫ t2

t1
L(q, q̇, t)dt. Consider a quadratic

Lagrange function, L(t, q, q̇)=α(t)q̇2(t)+β(t)q(t)q̇(t)+γ(t)q2(t)+δ(t)q̇(t)+χ(t)q(t)+ϕ(t), where α(t)= m(t)/2 is positive. In
order to use path integral to deal with the quadratic Lagrange function, one could treat the integration path is formed by
fluctuations around the classical path qcl(t) determined by the Lagrange equation. Let δq(t) be the perturbation around
the classical path, and is called the quantum fluctuation about the classical path. Furthermore, the values of q(t) at the
two boundaries ti, tf are fixed and denoted as qi, qf. If the quantum fluctuation is not strong enough, the action could be
decomposed into two parts, namely the classical action S[qcl(t)] and the quadratic fluctuation part Sf[δq(t)]. Keeping

— PAGE 2 OF 30 —



terms up to second order, and considering the equation for qcl(t), we have

S[q(t)]=
∫ tf

ti

dtL(t, qcl, q̇cl)︸                 ︷︷                 ︸
S[qcl(t)]

+Sf[δq(t)], (1.13)

where the fluctuation part is given by

Sf[δq(t)]=
∫ tf

ti

dt
[
α(t)δq̇2 +β(t)δqδq̇+γ(t)δq2]

. (1.14)

We call (1.14) the fluctuating action, which is originated from the fluctuation about the classical path, see Fig. B. The
above approximation is called the stationary-phase scheme. Under the stationary-phase approximation, then

iG(qf, tf; qi, ti)=〈qf|e−iH(tf−ti)/ħ|qi〉 =
∫
Dq(t)eiS[q(t)]/ħ =F (tf, ti)eiScl/ħ,

F (tf, ti)=
∫
D[δq(t)]×exp

[
i
ħ

∫ tf

ti

dt
[
α(t)δq̇2 +β(t)δqδq̇+γ(t)δq2]]

.

(1.15)

(1.16)

Here, F (tf, ti) is the quantum fluctuation factor. If the system is time-translational invariant, the quantum fluctuation
factor could be simplified as F (tf, ti) = F (tf − ti) = F (T). The calculation of the quantum fluctuation is extremely
important. It also should be pointed out if there exist higher order terms in coordinates or velocities, the stationary-
phase approximation will essentially break down.

q

t
ti tf

classical path

flu
ctu

ati
on

pat
h

Fig. B: Fluctuation around the classical path.

EXERCISE 4: When the stationary-phase approximation breaks down, we should consider high order corrections to the propa-
gator. Prove the following relation:

∫
enφ(x)dx ≈enφmax

√
2π

n|φ′′max|
×

[
1+ 1

24n

(
3φ

′′′′
max

φ
′′,2
max

+ 5φ
′′′,2
max

φ
′′,3
max

)
+O

(
1

n2

)]
. (1.17)

The propagator is then given by in this case (where N is a constant),

iG(qf, tf; qi, ti)≈N eiScl/ħ
/

det

(
1
ħ

δ2S[qcl(t)]
δqcl(t)δqcl(t′)

)
× [1+O(ħ)]. (1.18)

As an example, we calculate the path integral for the harmonic oscillator in details. The Lagrange function of the
harmonic oscillator is given by L = 2−1mq̇2 −2−1mωq2. The quantum fluctuation is then,

F (tf − ti)=
∫
D[δq(t)]exp

[
i

2ħ
∫ tf

ti

dt
(
mδq̇δq̇−mω2δqδq

)]
= lim

N→∞

( m
2πiħδt

)N/2 N−1∏
j=1

∫
dδq j exp

{
iδtm
2ħ

N∑
j=1

[(
δq j −δq j−1

δt2

)2
− ω2(δq j +δq j−1)2

4

]}
. (1.19)
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According to the boundary condition δq(ti)= 0= δq(tf), we can set δq0 = δqN = 0. By denoting Q j = [m/2ħδt]1/2δq j,

F (tf − ti)= lim
N→∞

( m
2πiħδt

)N/2
(

2ħδt
m

)(N−1)/2 ∫
dQexp

(
iQT~ΦQ

)
, (1.20)

where Q= (Q1, · · · ,QN−1)T. The integration could be done by standard transformation method, and the result is∫
dQexp

(
iQT~ΦQ

)
= (iπ)(N−1)/2√

det~Φ
. (1.21)

The next task is to calculate det~Φ. After a long and straightforward derivation, we have

δtdet~Φ= lim
N→∞

δtdet~ΦN = sinω(tf − ti)
ω

, (1.22)

leading to the quantum fluctuation as

F (tf − ti)=
(

mω

2πiħsinω(tf − ti)

)1/2
. (1.23)

On the other hand, the classical action of the oscillator is not hard to calculate,

S[qcl(t)]=
m
2

ω

sinω(tf − ti)
[(

q2
f + q2

i
)
cosω(tf − ti)−2qfqi

]
, (1.24)

see EXERCISE 3. Combining the quantum fluctuation and the classical action gives the final expression for the propa-
gator for the harmonic oscillator,

〈qf|e−iH(tf−ti)/ħ|qi〉 =
(

mω

2πiħsinω(tf − ti)

)1/2
×exp

[
i
ħ

mω

2sinω(tf − ti)
[(

q2
f + q2

i
)
cosω(tf − ti)−2qfqi

]]
. (1.25)

Since the harmonic oscillator is time-translation invariant, we could rewrite the above expression as

iG = 〈qf|e−iHT/ħ|qi〉 =
( mω

2πiħsinωT

)1/2 ×exp
[

i
ħ

mω

2sinωT
[(

q2
f + q2

i
)
cosωT −2qfqi

]]
. (1.26)

The limit of this with ω→ 0 is the corresponding propagator for free particles. In fact the propagator for the oscillator
can also include an overall phase factor eiφ(t), where φ(t) is a function of time.

EXERCISE 5: Show that the limit ω→ 0 corresponds to the free case.
EXERCISE 6: Prove the identity (1.22).

Based on the result (1.26), one could calculate several relevant quantities for harmonic oscillator. The propagator
has the boundary condition iG(qf,T; qi,T)= δ(qf − qi). By calculating the trace of the propagator, we have∫

dqiG(q,T; q,0)≡ tr
(
e−iHT/ħ

)
=

( mω

2πiħsinωT

)1/2 ∫
dqexp

[
i
ħ

mω[cosωT −1]q2

sinωT

]
=

( mω

2πiħsinωT

)1/2
(

iπħsinωT
mω[cosωT −1]

)1/2
= 1

2isin(ωT/2)

= 1
eiωT/2 − e−iωT/2 = e−iωT/2

1− e−iωT =
∞∑

n=0
exp

[
−i

(
n+ 1

2

)
ωT

]
, (1.27)

from which one immediately obtains the energy level of the oscillator,

En =
(
n+ 1

2

)
ħω. (1.28)

Inserting the identity matrix 1 gives the propagator in the following form (in the energy representation)

iG(qf, tf; qi, ti)=
∑
n

e−(i/ħ)En(tf−ti)φn(qf)φ∗
n(qi). (1.29)
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Setting τ= e−iωt leads to 2isinωt = (1−τ2)/τ,2cosωt = (1+τ2)/τ, then

iG(q, t;Q,0)=
( mω

2πiħsinωt

)1/2
exp

[
i
ħ

mω[(q2 +Q2)cosωt−2qQ]
2sinωt

]
=

( mω

πħ
)1/2

(
1−τ2

τ

)−1/2

×exp
[
−mω

ħ
τ

1−τ2
(q2 +Q2)(1+τ2)

2τ−2qQ

]
=

( mω

πħ
)1/2

exp
[
−mω(q2 +Q2)

2ħ τ1/2(1−τ2)−1/2
]
×exp

[
mω

ħ
2qQτ− (q2 +Q2)τ2

1−τ2

]
. (1.30)

Compare the results with following formula involving Hermite polynomial Hn(q),

∞∑
n=0

(t/2)n

n!
Hn(q)Hn(Q)= (1− t2)−1/2 exp

(
2qQt− (q2 +Q2)t2

1− t2

)
, (1.31)

the result is

iG(q, t;Q,0)=
( mω

πħ
)1/2

exp
(
−mω(q2 +Q2)

2ħ
)
×

∞∑
n=0

1
n!2n Hn

(√
mω

ħ q
)

Hn

(√
mω

ħ Q
)
exp

[
− i
ħ

(
n+ 1

2

)
ħωt

]
. (1.32)

The wave function for the harmonic oscillator is thus given by

φn(q)= 2−n/2(n!)−1/2
( mω

πħ
)1/4

exp
(
−mωq2

2ħ
)

Hn

(√
mω

ħ q
)
. (1.33)

EXERCISE 7: Discuss the classical and quantum probabilities for harmonic oscillator near the equilibrium position.
EXERCISE 8: Determine the probability distribution of the various values of the momentum for an oscillator.
EXERCISE 9: Find the wave function of the states of a linear oscillator that minimize the uncertainty relation, i.e., which the

standard deviation of the coordinate and momentum in the wave packet are related by δpδx =ħ/2, this is the coherent state.
EXERCISE 10: For the forced particle under the constant force f , show its path integral for the propagator is given by

iG(qf, t; qi,0)=
( m
2πiħt

)1/2 ×exp

[
i
ħ

[
m(qf − qi)2

2t
+ 1

2
f t(qf + qi)−

f 2t3

24m

]]
. (1.34)

B ∗Green’s Function: Sum Rules for a 2D Harmonic Oscillator

RELEVANT REFERENCES:

• The method of QCD sum rules was developed in the following papers: M. Shifman, A. Vainshtein, and V. Zakharov, QCD and
Resonance Physics. Theoretical Foundations, Nucl. Phys. B147, 385 (1979); ibid, QCD and Resonance Physics. Applications,
Nucl. Phys. B147, 448 (1979). This section relies on the introductory material from T. Cohen et al., QCD Sum Rules and
Applications to Nuclear Physics, Prog. Part. Nucl. Phys. 35, 221 (1995).

• For a full calculation on equation of state of nuclear matter using QCD sum rules is provided in: B.J. Cai and L.W. Chen,
Relativistic Self-energy Decomposition of Nuclear Symmetry Energy and Equation of State of Neutron Matter within QCD Sum
Rules, Phys. Rev. C 100, 024303 (2019).

The energy level of the 2-dimensional harmonic oscillator is En = (nx +ny +1)ħω = (2n+1)ω (by setting ħ = 1). We
develop algorithm to estimate the ground state energy B ≡ E0 =ω, the method is the sum rule equation.

The Hamiltonian for the two dimensional harmonic oscillator is given by H(p,q) = p2/2m+2−1mω2q2, where p2 =
p2

x + p2
y,q2 = x2 + y2. The wave function of the ground state is φ0(q) = (α/π)1/2e−αq2/2 with α = mω under ħ = 1. At the

origin we have |φ0(0)|2 = mω/π, which holds for any order wave functions. The Green’s function of the harmonic oscillator
is defined as the weighted average of the energy level, i.e.,

G(q1t1;q2t2)=
∞∑

n=0
φ∗

n(q2)φn(q1)e−iEn(t2−t1), (2.1)

see Eq. (1.29). One main ingredient of all types of sum rule approaches is to weaken the contributions from high excited
states. In order to do that in the harmonic oscillator, one can introduce the function,

U (Ω)=
∞∑

n=0
|φn(0)|2e−En/Ω, (2.2)
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where Ω is a constant larger than all En ’s, then at the limit Ω→ ∞, only ground state contributes to to U (Ω). The
function U is related to G through the analytical continuation, i.e., U (Ω)=G(q1 = 0, t1 = 0;q2 = 0, t2 = 1/iΩ), thus Ω can
be treated as the imaginary time. We have many opportunities to discuss the imaginary time in the following sections.
For the harmonic oscillator, we have

Uosci(Ω)=
∞∑
n

mω

π
e−(2n+1)ω/Ω = mω

2πsinh(ω/Ω)
. (2.3)

In the large Ω limit,

Uosci ≈
mΩ
2π

×
[
1− 1

6

(ω
Ω

)2 + 7
360

(ω
Ω

)4 − 31
15120

(ω
Ω

)6 +·· ·
]

. (2.4)

The first term in this expression is the corresponding U for a free particle, i.e., Ufree(Ω) = mΩ/2π. The terms in the
parentheses in Eq. (2.4) are high order corrections originated from the small quantity ω/Ω. On the other hand, the
function Ufree(Ω) can be written as the sum of energy level of the free particle,

Ufree(Ω)=
∫

d2k
(2π)2

e−Ek/Ω = m
2π

∫ ∞

0
e−E/ΩdE = 1

π

∫ ∞

−∞
e−E/Ωρfree(E)dE, (2.5)

where Ek =k2/2m is the free particle energy, and ρfree = 2−1mΘ(E) is the corresponding density of the energy level, Θ is
the standard step function.

Similarly, the density of the energy level of the oscillator could be given by ρosci(E)= mω
∑∞

n=0δ (E− (2n+1)ω). Then
a series of results can be obtained

1
m

∫ 2ω

0
[ρfree(E)−ρosci(E)]dE =0,

1
m

∫ (2n+1)ω

2nω
[ρfree(E)−ρosci(E)]dE =0,

1
m

∫ (2n+1)ω

2nω
[ρfree(E)−ρosci(E)]EdE =0,

(2.6)

(2.7)

(2.8)

etc., which are called dual relations between the free particle and the oscillator. Furthermore,

1
π

∫ ∞

0
[ρosci(E)−ρfree(E)]e−E/ΩdE = ∑

n=1

An

Ωn , (2.9)

the right hand side of which are the high order effects, which should become smaller and smaller as Ω increases. It is
also obvious that

1
π

∫ ∞

0
[ρosci(E)−ρfree(E)]dE = 0, (2.10)

which is another dual relation.
The dual relations indicate that although the structures of the energy level and the wave functions are very different

for the free particle and the oscillator, they share large similarities under integrals. Accordingly, we obtain the sum rule
equation for the harmonic oscillator through Eq. (2.2) and Eq. (2.4),

|φ0(0)|2e−B/Ω+ “high states”= mΩ
2π

×
[
1− 1

6

(ω
Ω

)2 + 7
360

(ω
Ω

)4 − 31
15120

(ω
Ω

)6 +·· ·
]

, (2.11)

where different “high states” generate different physical consequences. There are no special considerations to define
these “high states”, and the only requirement is that when Ω approaches to infinity, effects of the “high states” approach
to zero. For instance, if we model the high states like (m/π)e−s/Ω with s the threshold parameter above which the high
states contributions become relevant, we then have

|φ̃0(0)|2e−B/Ω ≈ Ω
2

(
1− e−s/Ω

)
− ω2

12Ω
+ 7

720
ω4

Ω3 − 31
30240

ω6

Ω5 |φ̃0(0)|2 = (π/m)|φ0(0)|2. (2.12)

After calculating the derivative of Eq. (2.12) with respect to “−Ω−1”, we obtain,

|φ̃0(0)|2Be−B/Ω ≈Ω
2

2
− Ω

2

2
e−s/Ω

(
1+ s

Ω

)
− ω2

12
+ 7

240
ω4

Ω2 − 31
6048

ω6

Ω4 . (2.13)
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Dividing Eq. (2.12) by Eq. (2.13) gives the formula for the ground state energy B,

B/ω≈ 1− (1+ν) e−ν+1/12−7/240x2 +31/6048x4

1− e−ν−1/12x+7/720x3 −31/30240x5 , (2.14)

with x = Ω/ω, f = s/ω,ν = f /x, this is the sum rule equation for the harmonic oscillator in two dimensions. Several
ingredients related to the above method are necessary to be pointed out:

(a) The result for B depends on the approximation of the high states, and in the above example, the approximation is
modeled as e−s/Ω.

(b) For a fixed approximation for the high states, the result for B depends on s and Ω. One hopes that at a certain
range of Ω, the result for B is insensitive to Ω. This range is often called the smooth region (window) which is of
course related to the value of s (or f ).

(c) If the approximation for the high states is selected unreasonable, there may not exist the smooth region.

If Eq. (2.12) is truncated, e.g., at order ω2, one then obtains

B/ω≈ 1− (1+ν) e−ν+1/12
1− e−ν−1/12x

. (2.15)

From either Eq. (2.15) or Eq. (2.14), we have approximately B/ω≈ 1.
EXERCISE 11: Estimate the ground state energy B using Eq. (2.14) and (2.15) and do the sensitive analysis.
EXERCISE 12: Adopt the “high states” via exp[−(s/Ω)n], do the similar sum rule calculations.

Comments. This very simple example on estimating the ground state energy of the 2D harmonic oscillator shares
many similarities of the sum rule (SR) equations used in quantum chromodynamics (QCD): (a) The Ω in the sum rule
equations for the harmonic oscillator is very similar as the Borel mass M in QCDSR, e.g., the smooth region (QCDSR
window) of M 2 is found to be about 0.8GeV2 .M 2 . 1.4GeV2; (b) Similarly in QCDSR, the nucleon correlation functions
should be constructed by the Lorentz structure of the nucleon self-energies, and they also contain relevant information on
the high states effects. Moreover, the high states effects on the physical quantities are weakened (even to be removed) by
the Borel transformation, which plays a central role in QCDSR; (c) On the other hand, quark/gluon correlation functions
(or more precisely, the quark/gluon condensates) are constructed via the operator product expansion (OPE) method,
which is similar to the expansion of the weighted average sum of energy level, i.e., Uosci, on the small parameter ω/Ω.
The OPE coefficients, called Wilson’s coefficients, are determined by standard perturbative methods in quantum field
theories; and (d) in QCDSR, the quark/gluon condensates such as 〈qq〉 and 〈G2〉 with q and G the quark and gluon fields
are determined by experimental analysis or microscopic calculations.

C Density Matrix (Elementary Introduction)

RELEVANT REFERENCE:

• R. Feynman, Statistical Mechanics: a Set of Lectures, CRC Press, 1998, Chapter 2.

Density matrix is the straightforward generalization of the wave function. Consider an ensemble consisting of N
systems, where N À 1. The state of the system is characterized by the vector |K〉,K = 1,2, · · · , N. By introducing the
orthogonal and normalized basis |n〉 and writing the state in terms of the basis as |K〉 =∑

n〈n|K〉|n〉, one finds that 〈n|K〉
is the wave function in the representation of the basis |n〉, according to the principle of quantum mechanics. An average
of the quantity f on the Kth system is thus calculated as fK = 〈K | f |K〉, and the ensemble expectation over fK is

〈 f 〉 = 1
N

N∑
K=1

〈K | f |K〉 = 1
N

N∑
K=1

∑
m,n

〈K |m〉〈m| f |n〉〈n|K〉 , (3.1)

where 〈m| f |n〉 is the matrix element of the operator f in the n-representation. Let’s define the matrix element of the
density matrix ρ as ρmn =∑

K 〈m|K〉〈K |n〉/N, and thus 〈 f 〉 =∑
m,n fmnρnm = tr(ρ f ). In quantum statistical problems, the

ensemble average of any quantity could be expressed as the trace of the product between the operator and the density
matrix, and this is the quadratic average namely both quantum-mechanically and statistically. If one writes the density
matrix in the form independent of the representation used, then ρ =∑

K |K〉〈K |/N. A few properties of the density matrix:

(a) The density matrix is Hermitian, i.e., ρmn = ρ∗nm.

(b) The trace is 1, and the diagonal elements are non-negative, i.e.,
∑

nρnn = 1,0≤ ρnn ≤ 1.
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Selecting the representation in which the density matrix is diagonal, i.e., ρmn = ρmδmn. Since,

tr
(
ρ2)=∑

m
ρ2

m ≤
(∑

m
ρm

)2
= 1, (3.2)

and the trace of a matrix is invariant under the unitary transform, thus the ρ in the non-diagonal representation,∑
n,m

ρmnρnm = ∑
m,n

|ρmn|2 ≤ 1, (3.3)

which puts constraints on each element of the density matrix. The diagonal element could be written explicitly as

ρnn = 1
N

∑
K
〈n|K〉〈K |n〉 = 1

N

∑
K
|〈n|K〉|2. (3.4)

According to quantum mechanics, |〈n|K〉|2 is the probability of the Kth system on the state |n〉, and averagely the
probability of any system of the ensemble on the state |n〉 is ρnn. In this sense, the diagonal element of the density
matrix characterizes the probability of the system of the ensemble staying on a certain state, and consequently it is very
likely that the density matrix shares the similarity of the probability density in classical physics.

There are two ensembles namely the pure ensemble and the mixed ensemble in quantum statistics. If every system
of the ensemble is staying at the same quantum state, we call the ensemble the pure ensemble. In this case, wave
function is enough to describe the ensemble, otherwise the ensemble is mixed. Naturally for the pure ensemble, we have
ρ2 = ρ, i.e., only one of the diagonal elements of the density matrix is 1 and all the others are zero. In the non-diagonal
representation, the pure density corresponds to

ρmn = 1
N

N∑
K=1

〈m|K〉〈K |n〉 ≡ 〈m|K〉〈K |n〉, (3.5)

ρ2
mn =∑

l
ρmlρln =∑

l
〈m|K〉〈K |l〉〈l|K〉〈K |n〉 = 〈m|K〉〈K |n〉 = ρmn. (3.6)

Let H be the Hamiltonian function of the system, then

iħ ∂

∂t
ρ = iħ ∂

∂t

(
1
N

∑
K
|K〉〈K |

)
=∑

K

1
N

H|K〉〈K |−∑
K

1
N

|K〉〈K |H = [H,ρ], (3.7)

which is called the quantum Liouville’s equation. From the quantum Liouville’s equation, one can immediately obtain
the time evolution of the average of the physical quantity

iħd〈 f 〉
dt

= tr
(
iħ∂ρ
∂t

f + iħρ ∂ f
∂t

)
= tr

(
[H,ρ] f + iħρ ∂ f

∂t

)
= tr

(
ρ

[
iħ∂ f
∂t

+ [ f ,H]
])

= iħ
〈
∂ f
∂t

〉
+〈[ f ,H]〉, (3.8)

If one knows the density matrix, then all the properties of the physical quantities could be obtained. For a system in
equilibrium, we have ∂ρ/∂t = 0, i.e., [ρ,H] = 0, indicating that ρ is a function of H. In addition, if the Hamiltonian H is
time-independent, one can choose the eigenstate of H., i.e., |n〉 to do the calculations, and in this case ρmn = ρnδmn.

Two frequently-used ensembles are the micro-canonical and the canonical ensembles. In the micro-canonical ensem-
ble, the energy E is fixed, thus ρmn = ρnδmn, where ρn = W−1 for E ≤ EK ≤ E+δ. All the thermodynamic properties of
the system/ensemble could be determined by the entropy S = kB lnW . For the pure ensemble, the number of microstates
is 1, thus S = 0. In the canonical ensemble, the energy E is not fixed, but could change by exchanging with the external
system. The density matrix is ρmn = ρnδmn, where ρn = Z−1e−βEn , here

Z = tr
(
e−βH

)
=∑

n
e−βEn , (3.9)

is the partition function. Moreover,

ρ = 1
N

∑
K
|K〉〈K | = 1

N

∑
mn

∑
K
|Em〉〈Em|K〉〈K |En〉〈En| =

∑
n
ρn|En〉〈En| = e−βH

Z

∑
n
|En〉〈En| = e−βH

tr(e−βH)
. (3.10)

The average of the physical quantity f in the canonical ensemble is

〈 f 〉 = tr
(
ρ f

)= tr( f e−βH)
tr(e−βH)

=
∑

n fne−βEn∑
n e−βEn

, (3.11)
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where fn is the eigenvalue of the f corresponding to the eigenstate En. The density matrix in the coordinate represen-
tation could be calculated as:

ρ
(
xN ,xN ′)= 〈xN |ρ|xN ′〉 =∑

n
e−ϕ−βEn〈xN |En〉〈En|xN ′〉 =∑

n
e−ϕ−βEnφn(xN )φ∗

n(xN ′
), (3.12)

here 〈xN |En〉 ≡φn(xN ) is the expression for the energy eigenstate in the coordinate representation (with N particles).
Example – 1. We calculate the density matrix of the ensemble consisting of free particles. The eigen-function of

the free particle with mass m placed in the cube with side length L is given by φE(x) = L−3/2eik·x under the periodic
boundary condition, and the eigenvalue is E =ħ2k2/2m. The density matrix of the canonical ensemble in the coordinate
representation is

〈x|e−βH |x′〉 =∑
E
〈x|E〉e−βE〈E|x′〉 =∑

n
e−βEφE(x)φ∗

E(x′)= 1
L3

∑
k

exp
[
−βħ

2k2

2m
+ ik · (x−x′)

]
. (3.13)

One can approximate the sum here by integration if the volume V is very large, using
∑

k → L3 ∫
dk/(2π)3,

〈x|e−βH |x′〉 = 1
(2π)3

∫
exp

[
−βħ

2k2

2m
+ ik · (x−x′)

]
dk=

(
m

2πβħ2

)3/2
exp

[
− m

2βħ2 (x−x′)2
]
, (3.14)

therefore

tr
(
e−βH

)
=

∫
〈x|e−βH |x〉dx=V

(
m

2πβħ2

)3/2
. (3.15)

This is the partition function of the free particle, from which one can calculate the density matrix as

ρ(x,x′)= 〈x|ρ|x′〉 = 〈x|e−βH |x′〉
tr(e−βH)

= 1
V

exp
[
− m

2βħ2 (x−x′)2
]
. (3.16)

EXERCISE 13: Derive the partition function (3.15) using conventional method.

It could be found that the diagonal element of the density matrix is ρ(x,x)= 1/V , which is independent of the position
x, indicating the probability the particle being at any position in the box is the same. Moreover, the off-diagonal element
of the density matrix ρ(x,x′) characterizes the spontaneous transition probability between position x and x′, and this
correlation effect is a pure quantum behavior. If the temperature T is high, the above expression approaches to a δ

function, i.e., the system is classical. We can then calculate the average of the Hamiltonian as

〈H〉 = tr(ρH)=
∫

dxdx′〈x|ρ|x′〉〈x′|H|x〉

=− ħ2

2mV

∫
dxdx′ exp

[
− m

2βħ2 (x−x′)2
]
∇2

xδ(x−x′)

=− ħ2

2mV

∫
dxdx′δ(x−x′)∇2

x exp
[
− m

2βħ2 (x−x′)2
]

=− ħ2

2mV

∫
dx′

[
∇2

x exp
[
− m

2βħ2 (x−x′)2
]]

x=x′
= 3

2
kBT. (3.17)

Example – 2. We now calculate the density matrix of the harmonic oscillator. The density matrix takes the form of
ρ = e−βH /tr(e−βH), which could be re-expressed in the energy representation as ρnm ∼ δnme−βEn . Taking the derivative
with respective to β gives −∂ρnm/∂β = δnmEne−βEn = Enρnm, which is the same as −∂ρ/∂β = Hρ. This is the Bloch’s
equation for ρ, with the initial condition ρ(0)= 1. In the coordinate representation, we have

−∂ρ(q, q′;β)
∂β

= Hρ(q, q′;β), ρ(q, q′;0)= δ(q− q′). (3.18)

For the harmonic oscillator, the Bloch’s equation reads

−∂ρ
∂β

=− ħ2

2m
∂2

∂q2 ρ+
1
2

mω2q2ρ. (3.19)
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The solution of it is given by,

ρ(q, q′;β)=
(

mω

2πħsinhβħω
)1/2

×exp
[
− mω

2ħsinhβħω
[(

q2 + q′2)
coshβħω−2qq′]] . (3.20)

EXERCISE 14: Solve Bloch’s equation for the harmonic oscillator by transforming to ξ = (mω/ħ)1/2q, f = ħωβ/2 and considering
the appropriate limit of f → 0.

10-2 10-1 100 101

1/kBT

0

1

2

3

4

〈 q|ρ
|q〉

classical
quantum
full

Fig. C: 〈q|ρ|q〉 as a function of 1/kBT.

If one takes q = q′ in the above expression, then

ρ(q, q;β)=
(

mω

2πħsinhβħω
)1/2

×exp
(
−mωq2

ħ tanh
βħω

2

)
, (3.21)

thus

tr
(
e−βH

)
=

∫
ρ(q, q;β)dq = 1

2sinh(βħω/2)
= e−βħω/2

1− e−βħω
, (3.22)

which is the partition function for a single oscillator. In addition,

〈q2〉 =
∫

q2ρ(q, q;β)dq
/∫

ρ(q, q;β)dq = ħ
2mω

coth
βħω

2
, (3.23)

and consequently,

〈U〉 =1
2

mω2〈q2〉 = ħω
4

coth
βħω

2
, (3.24)

〈K〉 =
〈
− ħ2

2m
∂2

∂q2

〉
= ħω

4
coth

βħω
2

. (3.25)

The total energy is

〈E〉 = 〈U〉+〈K〉 = ħω
2

coth
βħω

2
. (3.26)

EXERCISE 15: Discuss the high- and low-temperature limits of the density matrix (3.21).
EXERCISE 16: The behavior of a system is either classical or quantum-mechanical is determined by the thermal wavelength,

λth =
√

h2

2πmkBT
. (3.27)

Estimate at which temperature the de Broglie wavelength is comparable to the thermal wavelength.

D ∗Imaginary Time βħ↔ it, Path Integral Simulations

RELEVANT REFERENCES:

• M. Creutz and B. Freedman, a Statistical Approach to Quantum Mechanics, Ann. Phys. 132, 427 (1981).
• A. Zee, Quantum Field Theory in a Nutshell, 2nd Edition, Princeton University Press, 2010, Part V.
• D. Ceperley, Path Integrals in the Theory of Condensed Helium, Rev. Mod. Phys. 67, 279 (1995).
• W. Krauth, Statistical Mechanics: Algorithms and Computations, Oxford University Press, 2006, Chapter 3.

There exists close connection between the density matrix and the transition probability. For example, for the 1D free
particle, the transition amplitude from qi to qf is given by

〈qf|e−iHt/ħ|qi〉 =
( m
2πiħt

)1/2
exp

[
i
ħ

m(qf − qi)2

2t

]
, (4.1)

see Eq. (1.12). Similarly, the density matrix for the free particle 〈qf|e−βH |qi〉 is

〈qf|e−βH |qi〉 =
(

m
2πβħ2

)1/2
exp

[
−m(qf − qi)2

2βħ2

]
, (4.2)
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see Eq. (3.16). We can easily find if one uses βħ = it in Eq. (4.2), then Eq. (4.1) is naturally obtained. This means the
density matrix in statistical mechanics can be obtained from the transition probability in quantum mechanics (and
vice versa). We often call β= 1/kBT the imaginary time, which fundamentally encapsulates the physics of temperature
(therefore it describes equilibrium states.

EXERCISE 17: Establish this connection for the harmonic oscillator similarly.

Since the density matrix and the transition probability is strongly related via the imaginary time, one can also
formulate the path integral for the density matrix. Since the structures of 〈qf|e−βH |qi〉 and 〈qf|e−iHt/ħ|qi|〉 are very
similar, we start from the following probability,

〈qf|e−iH(tf−ti)/ħ|qi〉 =
∫
Dqexp

[
i
ħ

∫ tf

ti

[
1
2

mq̇2 −U(q)
]]

, (4.3)

here the factor appeared in the exponential is the action. Making t =−iτ(which is also called the Wick’s rotation, here
we find βħ∼ it ∼ τ) gives

iS|t=−iτ =
∫ τf

τi

dτ
[
−m

2

(
dq
dτ

)2
−U(q)

]
=−SE. (4.4)

After introducing the Euclidean action SE, we transform the factor eiS/ħ to e−SE/ħ(sometimes we also write it as eSE/ħ
which has a sign difference). The partition function is obtained as its path integral representation,

Z(β)= tr
(
e−βH

)
=

∫
dq〈q|e−βH |q〉 =

∫
q(0)=q(β)

D[q(τ)]exp
[
−1
ħ

∫ β

0
dτ

[
1
2

mq̇(τ)+U(q(τ))
]]

, (4.5)

here the measure D[q(τ)] contains the product of N terms and q̇ represents the derivative with respect to τ. The trace
operation sets the initial and final states equal and so the functional integral should be worked out over all paths
with the periodic boundary condition q(0) = q(β). Eq. (4.5) also tells that the Euclidean quantum field theory in (d+1)-
dimensional space-time with 0 ≤ τ≤ β is equivalent to quantum statistical mechanics in d-dimensional space. In order
to investigate a field theory at finite temperature all one needs to do is rotate it to Euclidean space and impose the
corresponding periodic boundary condition.
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Fig. D: Monte Carlo simulation for path integral for har-
monic oscillator (adopting Metropolis algorithm).

The periodic boundary condition q(0)= q(β) means only peri-
odic orbits make contribution to the partition function. The path
integral formulation of the partition function finds wide appli-
cations in field theory problems, like the decay of meta-stable
states, the instanton statistical problem, etc. We can use the
above idea to do Monte Carlo simulation and find certain prop-
erties of the system under consideration. Firstly, we denote iG
by K and introduce ε = iδt, then the propagator for the system
under influence U(q) could be written as

K(q, q0; N,ε)=
( m
2πħε

)N/2 ∫
dq1 · · ·dqN−1

×exp

[
ε

ħ
N∑

j=1

[
m
2

( q j − q j−1

δt

)2
−U(q j)

]]
, (4.6)

here Nε = τ (imaginary time), this is a high-dimensional inte-
gration which could be evaluated by efficient Monte Carlo al-
gorithm (e.g., the Metropolis). Next by introducing τ = it and
t0 = 0, we can write the propagator K(q,τ; q,0) as K(q,τ; q,0) =∑

nφn(q)φ0(q0)e−τEn/ħ. If one now lets the imaginary time τ ap-
proach to infinity, then only the information on the ground state
will be kept. More precisely, we have for the density

φ2
0(q)= lim

τ→∞ e−τE0/ħK(q,τ; q,0), (4.7)

where q0 = q (the periodic boundary condition) is also used.
Since the ground state wave function should be normalized, we
obtain φ2

0(q) = K(q,τ; q,0)/
∫ ∞
−∞dqK(q,τ; q,0). It is very important to remember that in order to evaluate the wave func-

tion, the periodic condition and the imaginary-time scheme are adopted. In the followed steps, one can do the standard
Monte Carlo simulation like the Metropolis to fulfill the above algorithm by treating the fact appeared in the exponential
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the effective energy. In Fig. D, we show the calculated results using the Metropolis algorithm for the harmonic oscillator
with U(q)= q2/2, here the left panel is the path in the imaginary time, and the right-lower panel shows the squared wave
function φ2

0(q). One can also study the ground state wave function of a double-well function, e.g., U(q)= q4 +λq2 where
λ < 0 is an control parameter. The non-trivial vacuum states of this function are given by q = ±(−λ/2)1/2. In Fig. E the
paths in the imaginary-time domain with decreasing λ (from left to right) are shown. As one can see when the control
parameter becomes more negative, the two equilibrium configurations

p
λ/2 and −p

λ/2 become more separable. Fig. F
shows the squared wave functions with three typical λ’s, i.e., λ = 0,−6 and −12 (from left to right). The squared wave
function in the left panel is very similar as the one obtained for the harmonic oscillator since the overall shape of q4 is
similar like that of q2. However as a nonnegative λ emerges, the double-peak wave function also emerges naturally. The
imaginary-time formalism is the foundation of many quantum Monte Carlo algorithms.
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Fig. E: Paths in the imaginary-time domain with decreasing λ (from left to right) of the potential U(q)= q4 +λq2 (with λ< 0).

−4 −3 −2 −1 0 1 2 3 4
q

0.00

0.25

0.50

0.75

1.00

|φ
0
(q
)|2

harmonic
double-vacuum

−4 −3 −2 −1 0 1 2 3 4
q

0.00

0.25

0.50

0.75

1.00

|φ
0
(q
)|2

harmonic
double-vacuum

−4 −3 −2 −1 0 1 2 3 4
q

0.00

0.25

0.50

0.75

1.00
|φ

0
(q
)|2

harmonic
double-vacuum

Fig. F: Squared wave functions with λ= 0,−6 and −12.

EXERCISE 18: How to obtain the ground state energy E0 from evaluating the imaginary-time path integral?
EXERCISE 19: For the harmonic oscillator, the first-excited energy level could be obtained from,

E1 −E0 =∆E =−1
ε

ln
( 〈q(0)q(τ+ε)〉

〈q(0)q(τ)〉
)
. (4.8)

Explain this formula. Then evaluate the first-excited energy in the harmonic oscillator for U(q)= q2/2.

E ∗Matsubara Frequency, Thermal Mass of a Scalar Field

RELEVANT REFERENCES:

• J. Kapusta, Quantum Field Theory at Finite Temperature, Cambridge University Press, 1989, Chapters 2 and 3.
• M. Laine and A. Vuorinen, Basics of Thermal Field Theory: A Tutorial on Perturbative Computations, Springer International

Publishing, 2016, Chapters 2 and 3.
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The imaginary-time formalism of the last section (e.g., Eq. (4.5)) could be generalized to the situation of a continuous
field theory. For example, for a real scalar field with Lagrangian (we adopt ħ= c = 1),

L0 = 1
2
∂µφ∂

µφ− 1
2

m2φ2 = 1
2

[
(∂tφ)2 − (∇φ)2 −m2φ

]
, (5.1)

one can obtain the partition function,

Z0 = tr
[
e−β(H0−µN)

]
=

∫
dφ〈φ|e−β(H0−µN)|φ〉 =

∫
Dπ

∫
φ(x,0)=φ(x,β)

Dφexp
(
−

∫ β

0
dτ

∫
dx(H0 −µN − iπ∂τφ)

)
, (5.2)

where τ= it, π= ∂tφ is the canonical momentum and H0 =π∂tφ−L0 = [π2+(∇φ)2+m2φ2]/2. Notice the periodic boundary
condition φ(x,0)=φ(x,β). After integrating the momentum part, we shall obtain

Z0 =N
∫
Dφexp

(
−

∫ β

0
dτ

∫
dxL0

)
=N

∫
Dφe−S0 ∼

∫
Dφe−S0 , (5.3)

here N is an integration constant (due to the momentum). The Lagrangian appearing in Eq. (5.3) is Euclidean, i.e.,

L0,E = 1
2

[
(∂τφ)2 + (∇φ)2 +m2φ2]

. (5.4)

However, we will frequently omit the subscript “E”.
We introduce X ≡ (x0,x)= (t,x)= (−iτ,x) and K ≡ (k0,k)= (−iωn,k), here ωn is called the Matsubara frequency. The

Fourier transform of φ(X ) is defined as

φ(X )= 1p
TV

∑
K

e−iK ·Xφ(K)= 1p
TV

∑
n,k

ei(ωnτ+k·x)φ(K), (5.5)

where K · X = K X = k0x0 −k ·x, we also have φ(−K) =φ∗(K) since φ(X ) is real. The boundary condition φ(0,x) =φ(β,x)
gives eiωnβ = 1, or

ωn = 2πnT, n ∈ Z. (5.6)

Now, the action in momentum space becomes,

S0 =
∫

X
L0 = 1

2

∫
X

[
(∂τφ)2 + (∇φ)2 +m2φ2]= 1

2

∑
K
φ(−K)

D−1
0 (K)
T2 φ(K),

∫
X
≡

∫ β

0
dτ

∫
dx, (5.7)

where D0(K) is the free propagator in momentum space,

D−1
0 (K)=ω2

n +|k|2 +m2, (5.8)

since ∫
X

(∂τφ)2 = 1
TV

∫
X

∑
K ,Q

[
∂τei(ωnτ+k·x)φ(K)

][
∂τei(ωmτ+q·x)φ(Q)

]
=− 1

TV

∫
X

∑
K ,Q

ωnωme−i(K+Q)Xφ(K)φ(Q)= 1
T2

∑
K
ω2

nφ(−K)φ(K), (5.9)∫
X

(∇φ)2 = 1
TV

∫
X

∑
K ,Q

[
∇ei(ωnτ+k·x)φ(K)

][
∇ei(ωmτ+q·x)φ(Q)

]
=− 1

TV

∫
X

∑
K ,Q

k ·qe−i(K+Q)Xφ(K)φ(Q)= 1
T2

∑
K
|k|2φ(−K)φ(K), (5.10)

∫
X

m2φ2 = m2

TV

∫
X

∑
K ,Q

[
ei(ωnτ+k·x)φ(K)

][
ei(ωmτ+q·x)φ(Q)

]
=− m2

TV

∫
X

∑
K ,Q

e−i(K+Q)Xφ(K)φ(Q)= m2

T2

∑
K
φ(−K)φ(K). (5.11)
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The partition function is given by

Z0 =N
∫
Dφ(K)exp

[
−1

2

∑
K
φ∗(K)

D−1
0 (K)
T2 φ(K)

]
. (5.12)

Considering the multi-dimensional Gaussian integration
∫

dq1 · · ·dqd e−qX q/2 =
√

(2π)d /det X , we further write

Z0 =
(
det

D−1
0 (K)
T2

)−1/2

, (5.13)

where another constant is omitted for simplicity. Consequently,

ln Z0 =−1
2

lndet
D−1

0 (K)
T2 =−1

2
ln

∏
K

D−1
0 (K)
T2 =−1

2

∑
K

ln
D−1

0 (K)
T2 . (5.14)

By using the theorem of residue one can perform the sum over Matsubara frequency, then

ln Z0 =−1
2

∑
n,k

ω2
n +ε2

k

T2 =−V
∫

dk
(2π)3

[ εk

2T
+ ln

(
1− e−εk /T

)]
, εk =

√
k2 +m2, (5.15)

the first term here is divergent (zero-point energy).
EXERCISE 20: Argue that φ(K) is dimensionless, and show that

∫
X eiK X = (V /T)δK0.

EXERCISE 21: Finish the process leading to Eq. (5.15) using complex integration techniques.
EXERCISE 22: Thermodynamic quantities can be obtained via the partition function,

Ω0 =−T ln Z0 = TV
∫

dk
(2π)3

[ εk
2T

+ ln
(
1− e−εk /T

)]
, P0 = T

∂ ln Z0
∂V

=−T
∫

dk
(2π)3

[ εk
2T

+ ln
(
1− e−εk /T

)]
, (5.16)

E0 =− ∂ ln Z0
∂β

=V
∫

dk
(2π)3

[
εk
2

+ εk
1− e−εk /T

]
, CV =

(
∂E0
∂T

)
V
=V

∫
dk

(2π)3
ε2k e−εk /T

T2(1− e−εk /T )2
. (5.17)

Discuss their high- and low-temperature behaviors. Show that after omitting the vacuum part, the pressure at high temperature is

P0 ≈ π2T4

90
− m2T2

24
+ m3T

12π
+ m4

2(4π)2

(
ln

meγ

4πT
− 3

4

)
− m6ζ(3)

3(4π)4T2 +·· ·, (5.18)

here γ is the Euler constant. What is its low-temperature limit?

The propagator in coordinate space can be obtained as,

D0(X )= 〈φ(X )φ(0)〉0 =
〈

1
TV

∑
K ,Q

e−iK Xφ(K)φ(Q)

〉
0

= T
V

1
T2

〈 ∑
K ,Q

e−iK Xφ(K)φ(Q)

〉
0

= T
V

∑
K

e−iK X 1
T2

∑
Q
〈φ(K)φ(Q)〉0 = T

V

∑
K

e−iK X 1
T2 〈φ(K)φ(−K)〉0, (5.19)

where in the last step one considers the fact that the ensemble average is nonzero only when K +Q = 0:

〈φ(P)φ(Q)〉0 =

∏
K

∫
dφ(K)exp

[
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

]
φ(P)φ(Q)

∏
K

∫
dφ(K)exp

[
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

] = δP+Q,0. (5.20)

Since

D0(Q)= 1
T2

∏
K

∫
dφ(K)exp

[
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

]
φ(Q)φ(−Q)

∏
K

∫
dφ(K)exp

[
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

] = 1
T2 〈φ(Q)φ(−Q)〉0, (5.21)
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we have
D0(X )= T

V

∑
K

e−iK X D0(Q), (5.22)

which could be further written as using Eq. (5.8),

D0(X )= T
∑
n

∫
dk

(2π)3
eiωnτ+ik·x

ω2
n +ε2

k
, ωn = 2πnT. (5.23)

EXERCISE 23: Prove that in d dimensions, D0(X ) is given by

D0(X )=
∫

ddk
(2π)d

eik·x
2εk

cosh[(β/2−|x0|)εk]
sinh(βεk/2)

∣∣∣∣∣
εk=

p
|k|2+m2

. (5.24)

Discuss its short- and large-distance behaviors.

Interaction may introduce extra novel features to the problem. Here, we consider the φ4 interaction in the form of
L=L0+Lint = 2−1∂µφ∂

µφ−2−1m2φ2−λφ4. The partition function is similarly given as (the in-front constant is omitted),

Z =
∫
Dφe−S , S = S0 +Sint =

∫
X
L0 +

∫
X
Lint, Sint =λ

∫
X
φ4. (5.25)

Assuming λ is small, then

ln Z = ln
∫
Dφe−S0−Sint = ln

(∫
Dφe−S0

∞∑
n=0

(−Sint)n

n!

)
, (5.26)

which becomes after subtracting and adding ln Z0,

ln Z = ln Z0 + ln


∫
Dφe−S0

∞∑
n=0

(−Sint)n

n!∫
Dφe−S0

= ln Z0 + ln Zint, (5.27)

where

ln Zint ≡ ln

1+
∞∑

n=1

1
n!

∫
Dφe−S0 (−Sint)n

∫
Dφe−S0

= ln

(
1+

∞∑
n=1

〈(−Sint)n〉0
n!

)
. (5.28)

Here, 〈· · · 〉0 implies that the ensemble average is taken in the free Lagrangian. For example, we have to order λ3 that

ln Zint ≈ ln

(
1−〈Sint〉0 +

〈S2
int〉0
2

− 〈S3
int〉0
6

)

≈−〈Sint〉0 +
1
2

(〈S2
int〉0 −〈Sint〉20

)− 1
6

(〈S3
int〉0 −3〈Sint〉0〈S2

int〉0 +2〈Sint〉30
)
. (5.29)

Let’s discuss in more details the perturbation at linear order of λ. Since,

〈Sint〉0 =λ

∫
Dφe−S0

∫
X
φ4(X )∫

Dφe−S0

, (5.30)

where

e−S0 =exp

(
−1

2

∑
K
φ(−K)

D−1
0 (K)
T2 φ(K)

)
=∏

K
exp

(
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

)
, (5.31)∫

X
φ4(X )= 1

T2V 2

∑
K1,··· ,K4

∫
X

ei(K1+···+K4)Xφ(K1) · · ·φ(K4)= 1
T3V

∑
K1,··· ,K4

δ(K1 +·· ·+K4)φ(K1) · · ·φ(K4), (5.32)
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we have

〈Sint〉0 =
λ

T3V

∑
K1,··· ,K4

δ(K1 +·· ·+K4)
∏
K

∫
dφ(K)exp

(
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

)
φ(K1) · · ·φ(K4)

∏
K

∫
dφ(K)exp

(
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

) . (5.33)

In order to simplify this expression, we notice the integration is nonzero only when K1,K2,K3 and K4 cancel each other.
There are three choices on contracting two momenta (lines) from four, therefore

〈Sint〉0 =
3λ

T3V

∑
Q,P

∏
K

∫
dφ(K)exp

(
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

)
φ(−Q)φ(Q)φ(−P)φ(P)

∏
K

∫
dφ(K)exp

(
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

)

= 3λ
T3V


∑
Q

∏
Q

∫
dφ(Q)exp

(
−1

2
φ(−Q)

D−1
0 (Q)
T2 φ(Q)

)
φ(Q)φ(−Q)

∏
Q

∫
dφ(Q)exp

(
−1

2
φ(−Q)

D−1
0 (Q)
T2 φ(Q)

)


2

. (5.34)

Using the expression for D0(Q) leads us to

ln Z(1)
int =−〈Sint〉0 =−3λ

T
V

[∑
Q

D0(Q)

]2

. (5.35)

Graphically, we use the following diagram to represent the interaction λφ4 (vertex),

K1

K2

K3

K4

. (5.36)

Contracting the four external lines then gives the corresponding contribution,

−〈Sint〉0 =−3λ
T
V

[∑
Q

D0(Q)

]2

= 3 . (5.37)

Here, each vertex induces the coupling constant −λ one time and each closed loop corresponds to T/V
∑

Q D0(Q). More-
over, momentum conservation gives the factor V /Tδ(Kin −Kout), and “3” is the combinatorial factor.

There is only one linked diagram in the first-order approximation. The un-linked diagrams in ln Z would be canceled
with each other, e.g., in the second-order approximation, we have

ln Z(2)
int =

1
2

(〈S2
int〉0 −〈Sint〉20

)
. (5.38)

Here the diagram corresponding to 〈S2
int〉0 should be constructed from (−λφ)2, namely from the following diagrams,

K1

K2

K3

K4

K5

K6

K7

K8

. (5.39)
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One possibility is contracting the left and diagram separably and obtaining two bubble diagrams, which cancel the
contribution from the term 〈Sint〉20, and the remaining contribution is given by

ln Z(2)
int = 36 +12 , (5.40)

here “36” and “12” are other related combinatorial factors. In particular, we have the following “translations”,

=(−λ)2
(

T
V

)4 (
V
T

)2 ∑
K1,··· ,K4

δ(K2 +K3)D0(K1) · · ·D0(K4)

=λ2 T2

V 2

[∑
K

D0(K)

]2 ∑
K2,K3

δ(K2 +K3)D0(K2)D0(K3),

=(−λ)2
(

T
V

)4 (
V
T

)2 ∑
K1,··· ,K4

δ(K1 +·· ·+K4)D0(K1) · · ·D0(K4).

(5.41)

(5.42)

One can prove mathematically that

ln Zint =
∞∑

n=1

(−)n〈Sn
int〉0,connected

n!
, (5.43)

which is called the linked-cluster theorem. Consequently, we have to order λ2 that,

ln Zint ≈ 3 +36 +12 +O(λ3). (5.44)

We will see in the following that these diagrams are not complete, and there would be terms proportional to λ3/2.
The full propagator could be decomposed into the free part and the interaction part (i.e., self-energy),

D−1(K)= D−1
0 (K)+Π(K). (5.45)

The connection between Π and ln Zint could be established as follows. Since ln Z = ln
∫
Dφe−S0−Sint , we have

δ ln Z
δD−1

0 (Q)
= 1∫

Dφe−S0−Sint

δ

δD−1
0 (Q)

∫
Dφe−S0 e−Sint

= 1∫
Dφe−S0−Sint

δ

δD−1
0 (Q)

∏
K

∫
dφ(K)exp

(
−1

2
φ(−K)

D−1
0 (K)
T2 φ(K)

)
e−Sint

=− 1
2T2

∫
Dφe−S0−Sintφ(−Q)φ(Q)∫

Dφe−S0−Sint

=−1
2

D(Q), (5.46)

therefore

D(Q)=−2
δ ln Z
δD−1

0
= 2D2

0
δ ln Z
δD0

. (5.47)

According to the definition of (5.45), we obtain D = [D−1
0 +Π]−1 = D0[1+D0Π]−1. From the relation (5.47) we then have

1
1+ΠD0

= 2D0
δ ln Z
δD0

. (5.48)
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By expanding both sides of Eq. (5.48) over λ and writing the self-energy in the series of Π = ∑∞
n=1Πn, one can find

that Πn is proportional to λn. For instance, we have at order λ2 that,

1
1+ΠD0

= 1−D0Π1 −D0Π2 +D0Π1D0Π1 +O(λ3). (5.49)

Eq. (5.14) gives δ ln Z0/δD0 = 2−1D−1
0 , and therefore

2D0
δ ln Z
δD0

= 2D0

(
δ ln Z0

δD0
+ δ ln Zint

δD0

)
= 1+2D0

δ ln Zint

δD0
≈ 1+2D0

[
−δ〈Sint〉0

δD0
+ 1

2

δ(〈S2
int〉0 −〈Sint〉20)

δD0

]
. (5.50)

We consequently obtain,

Π1 +Π2 −Π1D0Π1 +·· · =−2
δ ln Zint

δD0
, with Π1 = 2

δ〈Sint〉0
δD0

, Π2 −Π1D0Π1 =−δ(〈S2
int〉0 −〈Sint〉20)

δD0
. (5.51)

One can express the self-energy Π1 graphically as

Π1 = 6λ
T
V

δ

δD0

[∑
K

D0(K)

]2

= 12λ
T
V

∑
K

D0(K)=−2
δ

δD0

3

=−12 . (5.52)

We find calculating the functional derivative with respect to the propagator is equivalent to cutting a line. Similarly,

Π2 −Π1D0Π1 =−δ(〈S2
int〉0 −〈Sint〉20)

δD0

=− δ

δD0

72 +24



=−144 −144 −96 ,

(5.53)

(5.54)

(5.55)

therefore

Π1D0Π1 = 144 , Π2 =−144 −96 . (5.56)

The self-energy is in fact constructed from the one–particle–irreducible (1PI), i.e.,

Π=−2
(
δ ln Zint

δD0

)
1PI

. (5.57)

Check Π1 and Π2 for this relation.
We calculate the contribution from Π1 to the pressure. In order to do that, we first write out the expression for Π1,

Π1 = 12λ
T
V

∑
K

1
ω2

n +ε2
k
=Πvac

1 +ΠT
1 = 6λ

∫
dk

(2π)3
1
εk

+12λ
∫

dk
(2π)3

f (εk)
εk

, f (εk)= 1
eεk /T −1

. (5.58)

The temperature-dependent part is convergent while the vacuum contribution diverges. We can remove the divergent
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vacuum contribution by using the renormalized self-energy, Πren
1 =Π1 −Πvac

1 . Then the modified propagator is given by
D−1(K)=ω2

n+k2+m2+Π1. We see that the self-energy plays a similar role as the mass squared term in the Lagrangian,
and we can account for this effect by adding the a contribution in the original Lagrangian as L→L−2−1δm2φ2. This
added new term could be treated as another interaction and δm2 has the same order as λ. Its graph is represented as

δm2〈φ2〉0 = . (5.59)

The cutting rule then gives the corresponding contribution to the self-energy as

δm2 = . (5.60)

In this sense, we can obtain finite result by selecting the renormalized scheme δm2 =−Πvac
1 .

For massless Boson (m = 0), which is equivalent to high temperature T À m, we have

Πren
1 = 12λ

∫
dk

(2π)3
f (εk)
εk

≈λT2, (5.61)

where the relation
∫ ∞

0 xdx/(ex −1) = π2/6 is used. We see that the massless Boson acquires a thermal mass λT2 at high
temperatures. The ln Zint at order λ is given by including the mass-correction term as,

ln Z(1)
int = 3 − 1

2
=−3λ

V
T

[
T
V

∑
Q

D0(Q)

]2

− 1
2
δm2 ∑

Q
D0(Q)

=−V
T

1
48λ

(
Πvac

1 +ΠT
1

)2 + V
T

1
24λ

Πvac
1

(
Πvac

1 +ΠT
1

)
= V

T
1

48λ

(
Π

vac,2
1 −ΠT,2

1

)
, (5.62)

therefore we obtain (after removing the vacuum part),

T
V

ln Z(1)
int =−3λ

[∫
dk

(2π)3
f (εk)
εk

]2
≈−λT4

48
. (5.63)

The corresponding expression for the pressure is then,

P = π2T4

90

(
1− 15

8
λ

π2 +·· ·
)
. (5.64)

We have already seen that the first-order perturbation adds a thermal mass λT2 to the massless particle. At low
momentum/energy (near the thermal mass scale), i.e., ω2

n, |k|2 ∼ λT2, the free propagator D−1
0 = ω2

n + k2 itself is on the
order of λT2. However, the contribution from the self-energy is also on such order, implying the above perturbative
calculation is unreasonable. Actually, we need to consider an infinite series of graphs to remove the infrared divergence,
a technique sometimes called resummation. The full propagator should be used instead of the free one, i.e.,

Π= 12λ
T
V

∑
K

D(K)= 12λ
T
V

∑
K

1
D−1

0 (K)+Π , (5.65)

this is a self-consistent equation for Π. We expand the term above to obtain,

1
D−1

0 (K)+Π = D0

∞∑
n=0

(−ΠD0)n, Π= 12λ
TD0

V

∑
K

∞∑
n=0

(−ΠD0)n. (5.66)

If one uses Π1 to approximate Π in (5.65) then there would be a large loop on which n small loops are attached. Such
diagram is often called a daisy diagram. Iterating the process further, one should obtain the so-called super-daisy
diagram. We would like to point out that although there are many many loops in the diagram the overall structure of
the self-energy is still one-loop. We now write Eq. (5.65) in the following more apparent form,

Π= 12λ
∫

dk
(2π)3

T
∑
n

1
ω2

n +k2 +Π = 12λ
∫

dk
(2π)3

f
(p

k2 +Π
)

p
k2 +Π

, (5.67)
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where the sum over Matsubara is used and the zero-temperature is removed. By introducing a new integration variable
x =

p
k2/Π+1 we can obtain the equation 1= (6λ/π2)

∫ ∞
1 dx

p
x2 −1 f (

p
Πx). According to the formula,∫ ∞

1
dx

√
x2 −1 f (ux)= 2π2T2

u2

[
1
12

− u
4πT

+O
(

u2

T2 ln
u
T

)]
, (5.68)

we obtain

Π=λT2 − 3T2λ3/2

π
+·· · . (5.69)

We find that the next-order contribution is proportional to λ3/2 instead of λ2.
EXERCISE 24: Plot Π1/2/T as a function of λ using the exact solution, the solutions at orders λ and λ3/2.

The partition function including interaction could similarly be obtained,

ln Zint =−〈Sint〉0 +
∞∑

N=2

(−1)N〈SN
int〉0,c

N!
, (5.70)

here “c” abbreviates for “connected”, and

∞∑
N=2

(−1)N〈SN
int〉0,c

N!
=

∞∑
N=2

(−)N

N!
6N2N−1(N −1)!

N loops

=
∞∑

N=2

1
N!

6N2N−1(N −1)!V
∑
n

∫
dk

(2π)3
(−Π1)N

12N DN
0 (K)= V

2

∑
n

∫
dk

(2π)3
∞∑

N=2

1
N

[−Π1D0(K)]N

=−V
2

∑
n

∫
dk

(2π)3
{ln[1+Π1D0(K)]−Π1D0(K)}=−V

2

∑
n

∫
dk

(2π)3

[
ln

(
1+ λT2

ω2
n +k2

)
− λT2

ω2
n +k2

]
. (5.71)

The pressure is given by combining the zero-temperature contribution and the mode of n = 0 above, i.e.,

P ≈ π2T4

90
− λT4

48
− T

2

∫
dk

(2π)3

[
ln

(
1+ λT2

k2

)
− λT2

k2

]
≈ π2T4

90

[
1− 15

8
λ

π2 + 15
2

(
λ

π2

)3/2
+·· ·

]
. (5.72)

We see again that the next-order contribution to the pressure is λ3/2.
EXERCISE 25: Prove the relation: ∫

dk
(2π)3

[
ln

(
1+ λT2

k2

)
− λT2

k2

]
=−λ

3/2T3

6π
. (5.73)

Discuss how the potential divergence maybe removed.

Perturbatively determining/analyzing different types of correction to a given quantity is a central theme in physical
calculations. Finally, we give a few examples and point out certain important ingredients when necessary.

Example – 1. The main feature of the estimation on the order of magnitude and approximated perturbative calcu-
lations could be clearly demonstrated in some very elementary mathematical problems. For instance, it could be shown
when trying to solve the following simple algebraic equation,

xn(t)=Ω+ tx(t)/Λ, x(t) ∈R+, n ∈N+, n ≥ 5, t ≥ 0, (5.74)

where t and Λ are two parameters (e.g., t is the time) with Λ a positive constant. As we all know there is no closed
formula for the simple algebraic equation if the order of the equation is larger than or equal to five. In this sense we
need use either numerical algorithms or approximated methods to investigate the root of the equation like (5.74). If the
“time” t is small near zero, the second term on the left hand side of Eq. (5.74) could be treated as a perturbation and in
this case we could assume x(t)≈ x0[1+δ(t)]=Ω1/n[1+δ(t)] with δ(t) a small correction to the leading order solution “1”.
Expanding both sides of Eq. (5.74) to order δ(t), one obtains δ(t)= tΩ1/n−1/nΛ and then,

x(t)≈Ω1/n
(
1+ 1

nΛ
Ω1/n−1t

)
. (5.75)
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The above (approximated) theory will be broken if t. nΛΩ1−1/n. The approximated theory here is often called the linear
perturbation and the basic requirement is that the t should not be larger than nΛΩ1−1/n, e.g., t. tmax ≈ snΛΩ1−1/n, s ¿ 1.
Moreover, if one considers the next contribution to the solution, i.e., x(t) =Ω1/n(1+αt+βtσ), where α=Ω1/n−1/nΛ, then
after some straightforward calculations, one obtains that σ= 2 and consequently,

x(t)≈Ω1/n
(
1+ 1

nΛ
Ω1/n−1t− n−3

2n2Λ2Ω
2/n−2t2

)
. (5.76)

One has that t ¿ nΛΩ1−1/n from the first-order theory. If higher order corrections are taken into consideration, e.g., the
second-order contribution appeared in (5.76), the condition for the perturbation theory is obtained as |(n−3)δ2(t)/2| ¿
|δ(t)|, or equivalently |(n−3)δ(t)/2| ¿ 1, or t ¿ 2nΛΩ1−1/n/(n−3). It becomes t ¿ 2ΛΩ1−1/n ∼ 2ΛΩ if n is large, which is
weaker than the criterion t ¿ nΛΩ1−1/n, indicating the effective perturbative region shrinks as the order of the expan-
sion increases. The perturbation element (or the small quantity in general) of the Eq. (5.74) is δ(t) = αt =Ω1/n−1t/nΛ,
and consequently x(t)≈Ω1/n[1+δ(t)−(n−3)δ2(t)/2]. It is obvious that it could not be treated as small when the t is large,
indicating that either the linear theory or the theory with higher order terms breaks down at large t. However, on the
other hand, in the limit that the t approaches to infinity, another perturbative scheme for Eq. (5.74) emerges. In that sit-
uation, the term Ω on the right hand side of the equation (5.74) could be safely neglected, leading to x∞(t)= (t/Λ)1/(n−1),
and it is called the asymptotic solution (large-t) of Eq. (5.74). Assuming that x(t)≈ x∞(t)[1+φ(t)] based on the asymptotic
solution and the factor |φ(t)|¿ 1, one could obtain,

x(t)≈
(

t
Λ

) 1
n−1

[
1+ Ω

n−1

(
Λ

t

) n
n−1

]
, φ(t)= Ω

n−1

(
Λ

t

) n
n−1

, (5.77)

with the condition that
t À tasp ≡Λexp

(
−n−1

n
ln

(
n−1
Ω

))
. (5.78)

Moreover, considering that x(t) ≈ x∞(t)[1+φ(t)+µ(t)] to even higher order with µ(t) the contribution smaller than φ(t),
we have

x(t)≈
(

t
Λ

) 1
n−1

[
1+ Ω

n−1

(
Λ

t

) n
n−1 − nΩ2

2(n−1)2

(
Λ

t

) 2n
n−1

]
, (5.79)

and thus x(t) ≈ x∞(t)[1+φ(t)−nφ2(t)/2], i.e., µ(t) = −nφ2(t)/2. The exact solution of the algebraic equation (5.74) could
be numerically constructed (e.g., iterative scheme or the Newton’s algorithm).

Example – 2: an effective Hooke’s “constant”. Consider the particle moves under a potential having a minimum
x0. For motion around x0, the potential acting on the particle could be approximated by expanding the potential U(x) as,

U(x)≈U(x0)+U̇ |x=x0δx+2−1Ü |x=x0δx2, (5.80)

where δxn = (x−x0)n, U̇ = dU /dx, and Ü = d2U /dx2, and since the first-order derivative of the potential at the equilibrium
x0 is zero, one obtains

Uharm(δx)= 2−1k2δx2 +const., k = [U ′′(x0)]1/2, (5.81)

where the constant is the zero point of the potential (which actually has no fundamental effects on the dynamics pro-
cesses). The above one is called the harmonic potential, and the solution of which could be obtained exactly. Now, if one
tries to study the behavior of the particle far from the equilibrium position x0, the natural treatment is investigating
the effects from the high order terms (e.g., the term δx3) perturbatively based on the harmonic solution. This is the
frequently-used method in physical problems: Firstly obtaining the solution via the simple approximation (here it is
given by Uharm(δx), the terms like this are often called the non-interacting terms), and then perturbatively computing
the high order effects based on the simple solution. The oscillation around the meta-stable states if they exist is also
important and the transition from the meta-stable states to the global ground state is an exciting issue in modern field
calculations.1 Consider the extra force f δ(x) based on Hooke’s force in the harmonic system, δx → x. In this situation
the energy conservation equation becomes 2−1mẋ2 +2−1kx2 +Uδ(x) = 2−1kd2

max +Uδ(dmax), where dmax the maximum
distance the oscillator could reach, and Uδ(x) is the potential due to the extra force. If the extra potential is homogeneous
with order α, i.e., Uδ(λx)=λαUδ(x), the period of the system could be given generally by

T = 4
√

m
k

∫ π/2

0
dη

[
1+ 2Uδ(dmax)[1−sinαη]

kd2
max cos2η

]−1/2

. (5.82)

1The tunneling between the true and false vacuum states was investigated in S. Coleman, Fate of the False Vacuum: Semiclassical Theory, Phys.
Rev. D 15, 2929 (1977); C. Callan and S. Coleman, Fate of the False Vacuum. II: First Quantum Corrections, Phys. Rev. D 16, 1762 (1977).
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In certain situations one can do perturbative calculations based on ξ= 2Uδ(dmax)[1−sinαη]/kd2
max cos2η. By taking the

extra force as f δ(x) = −ax3(a > 0), ξ = (ad2
max/2k)(1+ sin2η), the effective potential is then given by Ueff(x) = Utot(x) =

2−1kx2 +4−1ax4, characterizing the cubic response to the perturbation. However, such effective potential has actually
little use since the high order term here still contains the dynamical variable “x”. One could obtain to order a2 that,

T ≈ 2π
√

m
k

×
(
1− 3ad2

max

8k
+ 57a2d4

max

256k2

)
, (5.83)

and the perturbative condition is σ = ad2
max/k ¿ 1, or equivalently Uδ(dmax) ¿ U(dmax)/2. In this formula, if the re-

placements, m/k ↔ `/g, dmax = χmax` and a = −mg/6`3 are made, one immediately obtains the first-order correction
coefficient 1/16 in the period of the simple pendulum, namely

T ≈ 2π

√
`

g
×

(
1+ 1

16
χ2

max +
11

3072
χ4

max +·· ·
)
, (5.84)

where χmax is the maximum angle of the simple pendulum. However the even higher order corrections could not be
obtained simply through (5.83), since the period of the simple pendulum contains higher order corrections from sinχ. The
correction directly from the term ax3 corresponds to the conventional perturbation theories, and the one characterized
by the factor 1+16−1χ2

max + (11/3072)χ4
max +·· · corresponds to the improved perturbations. The fourth-order correction

(11/3072)χ4
max in the period of the simple pendulum could be decomposed into two terms: the χ2

max term and the χ4
max

term from the interacting energy E(χmax) = −mg`cosχmax ≈ −mg`(1− 2−1χ2
max + 24−1χ4

max + ·· · ), or equivalently the
terms proportional to χ and to χ3 in the force F(χ) = −mgsinχ ≈ −mg(χ−6−1χ3). One could obtain the corresponding
nonlinear effects simply by considering the χ3 term based on the harmonic approximation, but the coefficient is 19/3072
(via the formula (5.83)) instead of 11/3072. Improved perturbation indicates that besides the “direct” term —χ3, the
higher order term originated from χ (e.g., the first term in sinχ ≈ χ−χ3/6) also contributes to the coefficient 11/3072.
This latter one is denoted as the “indirect” contribution; in other words, there exists the mode-coupling between the
low modes (here characterized by χ) and the high modes (characterized by χ3), in the sense χ3 ← (χ3)1 (direct term)+
(χ1)3 (indirect high order terms). As the index “n” appearing in χn becomes large, the mode-coupling pattern will also
become more fruitful. We introduce the very basic concept of effective theories. In the case of the force ax3, one could
derive an effective Hooke’s constant through the period of the system. In particular, according to the general period
formula, one has T = 2π(m/keff)1/2 = 2πm1/2k−1/2

eff where the effective spring constant is keff ≈ k(1+ s1σ+ s2σ
2)+O(σ3)

with σ= ad2
max/k ¿ 1. In order to reproduce the first two terms as shown in the formula (5.83), i.e., −3σ/8 and 57σ2/256,

one obtains the two coefficients s1 = 3/4 and s2 =−3/128. The effective Hooke’s constant is thus2

keff ≈ k×
(
1+ 3

4
ad2

max

k
− 3

128
a2d4

max

k2

)
, (5.85)

and in other applications one could use the effective potential Ueff(x) = 2−1keffx2. Here the high order effects character-
ized by the coefficient a appears in the low-order coefficient and the “dynamical” variable “x” disappears at the fourth
order. However, there exist other approaches to construct the effective parameters, e.g., the Hooke’s constant in the
presence of the nonlinear force could also be obtained as keff = k+ad2

max/2 by considering the maximum distance, indi-
cating other mechanisms need to be taken into account in the construction of an effective theory. We have no attempt
to introduce/discuss these advanced issues in the present lecture. The effective theories with the high order degrees of
freedom integrated out are often called the “low-energy effective theories”.

Example – 3: equation of state of a unitary Fermi gas. The unitary limit refers to akF → ∞ where a is the
scattering length and kF = pF is the Fermi momentum of the system under consideration. Obviously, the conventional
perturbative schemes based on the small quantity akF does not apply for the unitary Fermi gas. Conventionally, the
equation of state (defined as the energy per particle) for small akF is given by

EOS≈ k2
F

2m

(
3
5
+ 2

3π
kFa+ 4

35π2 (11−2ln2)(kFa)2 +0.23(kFa)3 +·· ·
)
, (5.86)

here kF = (3π2ρ)1/3 with ρ being the density. The first term here, namely 3k2
F/10m is the free-gas result and EF ≡ k2

F/2m
is the Fermi energy. We want to analyze ξ≡ µ/EF, the Bertsch parameter. Theoretical analysis tells us that besides the
limit akF → 0, the 4D system is also free. The wave function of a pair of Fermions with opposite spins in dimensions d is
R(r)∼ r2−d , here d is the distance between the Fermions. When calculating relevant quantities, one needs

∫
dx|R(r)|2 ∼

2See, B.J. Cai and B.A. Li, Auxiliary Function Approach for Determining Symmetry Energy at Suprasaturation Densities, Phys. Rev. C 103, 054611
(2021), Section III.
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∫
drrd−1r4−2d ∼ ∫

drr3−d , implying the probability of emergence of such pair near r = 0 for d ≥ 4 is large (singularity). In
this sense, we say that the system in 4D is the non-interacting, ξ= 0, and one can develop effective theories in 4D and
extrapolate the corresponding equation of state to 3D; the idea of Nishida–Son effective theory.3 The Lagrangian is

L= ∑
σ=↑,↓

ψ†
σ

(
i∂t + ∇2

2m
+µσ

)
ψσ+ c0ψ

†
↑ψ

†
↓ψ↓ψ↑ =Ψ†

(
i∂t + σ3∇2

2m
+µσ3 +δµ

)
Ψ− 1

c0
φ†φ+Ψ†σ+Ψφ+Ψ†σ−Ψφ†, (5.87)

where Ψ = (ψ↑,ψ†
↓)

T are the two-component Nabmu–Gorkov field, σi with i = 1 ∼ 3 are the three Pauli matrices, σ± =
(σ1 ±σ2)/2, µ = (µ↑ +µ↓)/2, δµ = (µ↑ −µ↓)/2, and c0 is the interaction strength between two Fermions. By introducing
φ = φ0 + gϕ where g = [(8π2ε)1/2/m](mφ0/2π)ε/4, ε = 4− d and ϕ being the fluctuating field and φ0 the ground state
(condensate), one can expand the Lagrangian as L=L0 +L1 +L2:

L0 =Ψ†
(
i∂t + σ3∇2

2m
+σ+φ0 +σ−φ0

)
Ψ+ϕ†

(
i∂t + ∇2

4m

)
ϕ, (5.88)

L1 =gΨ†σ+Ψϕ+ gΨ†σ−Ψϕ† +µΨ†σ3Ψ+2µϕ†ϕ, L2 =−ϕ†
(
i∂t + ∇2

4m

)
ϕ−2µϕ†ϕ. (5.89)

Here, L0 is the free part and the mass of a Fermion pair is 2m, L1 and L2 define the vertices. The Fermion and the
Boson propagators are given by,

G(p0,p)= 1
p2

0 −ε2(p)+ i0+

(
p0 +E(p) −φ0

−φ0 p0 −E(p)

)
; D(p0,p)=

(
p0 − E(p)

2
+ i0+

)−1
, (5.90)

where E(p)=p2/2m is the single-particle energy, ε(p)= [E2(p)+φ2
0]1/2 is the dispersion relation. Based on this effective

theory, one can show that the 1-loop and 2-loop potentials are,

U (1)
eff (φ0)=φ0

3

[
1+ 7−3(γ+ ln2)

6
ε

](
mφ0

2π

)d/2
− µ

ε

[
1+ 1−2(γ− ln2)

4
ε

](
mφ0

2π

)d/2
; U (2)

eff (φ0)=−Cεφ0

(
mφ0

2π

)d/2
, (5.91)

where C ≈ 0.14424 is a constant. The total effective potential to this order is then Ueff(φ0) = U (1)
eff (φ0)+U (2)

eff (φ0), the
minimum of which gives the condensate field φ0 as φ0 = (2µ/ε)[1+ (3C−1+ ln2)ε]. One sees µ is really on the order of ε.
After obtaining the effective potential, one can evaluate the pressure P =−Ueff(φ0) and then ρ = ∂P/∂µ, therefore

ξ≡ µ

EF
= 1

2
ε3/2 exp

(
ε lnε
8−2ε

)[
1−

(
3C− 5

4
(1− ln2)ε

)]
≈ 2−1ε3/2 +16−1ε5/2 lnε−0.0246ε5/2. (5.92)

Taking ε = 1 gives ξ ≈ 0.475, which is close to the experimental result ≈ 0.376.4 The Nishida–Son theory was later
expanded by including higher-order terms in ε and the prediction is even closer to the experimental result.

Example – 4: corrections to gravitational potential. The gravitational potential between two masses m1 and
m2 with distance r given by UG(r)=−Gm1m2/r should be modified to be when considering the relevant corrections:5

Ueff
G (r)≈−Gm1m2

r

[
1− G(m1 +m2)

rc2 − 127
30π2

Għ
r2c3

]
, (5.93)

here the second (third) term is the special-relativity correction characterized by c (quantum correction by ħ).
EXERCISE 26: Derive the analytic expressions for the x(t) of Eq. (5.74) to order δ3(t) and φ3(t). Discuss their applicable condi-

tions; consider the equation by generalizing Eq. (5.74) to be xn(t)=Ω+ txm(t)/Λ with m < n, develop its approximated solutions.
EXERCISE 27: Assume the effective spring constant is keff ≈ k(1+ s1σ+ s2σ

2 + s3σ
3 + s4σ

4), work out the values of s3 and s4.
EXERCISE 28: The Coleman–Weinberg potential6 is the effective potential when including radiative corrections. For a scalar

field, the Coleman–Weinberg potential is given by,

Ueff(φcl)=U(φcl)−
iħ
2

∫
d4k

(2π)4
ln

[
1− U ′′(φcl)

k2

]
→Ueff(φcl)=U(φcl)+

ħ
2

∫
d4kE
(2π)4

ln

[
1+ U ′′(φcl)

k2
E

]
, (5.94)

3Y. Nishida and D.T. Son, ε Expansions for a Fermi Gas at Infinite Scattering Length, Phys. Rev. Lett. 97, 050403 (2006).
4M. Ku et al., Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas, Science 335, 563 (2012).
5J. Donoghue, Leading Quantum Correction to the Newtonian Potential, Phys. Rev. Lett. 72, 2996 (1994).
6S. Coleman and E. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7, 1888 (1973); S. Coleman,

Aspects of Symmetry, Cambridge University Press, 1985, Chapter 5; for a recent relevant discussion, see, e.g., A. Andreassen, W. Frost, and M.
Schwartz, Consistent Use of Effective Potentials, Phys. Rev. D 91, 016009 (2015).
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where the second expression follows from using k0 = ikE
0 and k=kE, and therefore d4k = id4kE as well as k2 =−k2

E. Obviously, (5.94)
is a semi-classical expansion based on ħ. Adopting U(φ)= 2−1µ2φ2+λφ4/4!, considering the counter-terms Bφ2

cl+Cφ4
cl in the effective

potential and the renormalization conditions d2Ueff(φcl)/dφ2
cl|φcl=0 = 0 together with d4Ueff(φcl)/dφ4

cl|φcl=M =λ(M) to show

Ueff(φcl)=
1
24

λ(M)φ4
cl +

λ2(M)φ4
cl

256π2

[
ln

(
φ2

cl
M2

)
− 25

6

]
+O[λ2(M)]. (5.95)

For the (0+1)-dimensional problem, show that Ueff(φcl)=U(φcl)+2−1ħµ[1+λφ2
cl/2µ

2]1/2. Obviously, Ueff(0) is the zero-point energy.

F Linear Perturbations, Retarded Response and Correlation Functions

RELEVANT REFERENCE:
• D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, CRC Press, 1975.
• P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, 1995, Chapter 7.
• X.G. Wen, Quantum Field Theory of Many-body Systems, Oxford University Press, 2004, Chapter 2.
• J. Negele and H. Orland, Quantum Many-particle Systems, Westview Press, 1988, Chapter 5.
• A. Fetter and J. Walecka, Quantum Theory Many-particle Systems, Dover Press, 2003, Chapter 5.
• R. Kubo, The Fluctuation-dissipation Theorem, Rep. Prog. Phys. 29, 255 (1966).
• L. Kadanoff and P. Martin, Hydrodynamic Equations and Correlation Functions, Ann. Phys. 24, 419 (1963).

perturbation S

response R

black box

Fig. G: The black box executes a response R when a pertur-
bation S is applied on it.

When we perturb a system (nuclear matter, solid, etc.), gen-
erally treated as a black box, the system would response corre-
spondingly. Let us execute a perturbation S on the black box,
then the latter generally responses characterized by R. If the
perturbation is not quite strong (weak), the response R is ex-
pected to be proportional to S, i.e.,

R =βS, (6.1)

where β is the corresponding proportionality coefficient. An el-
ementary example is the Hooke’s force applied on a spring with
coefficient k, i.e., F =−kx where x is the distance from the equi-
librium position. By measuring the linear response F with a dis-
tance x, one can straightforwardly determine Hooke’s constant
k, therefore linear responses could be measured. To develop a
theory for a given system, it is therefore extremely important
to calculate various linear responses from the theory, because

these results are usually the easiest to check by experiment. Consider a 1D harmonic oscillator with Hamiltonian
H0 = p2/2m+2−1mW2x2 and a dipole interaction δH =−eEx, here E is the electric field. The induced dipole momentum
is given by d = 〈n|ex|n〉, here |n〉 is the ground state of H0+δH. To the first order of perturbation theory, |n〉 is given by

|n〉 = |0〉+ ∑
n=1,2,···

|n〉 〈n|δH|0〉
E0 −En

, (6.2)

here |n〉 is the ground state of H0. The dipole momentum is then obtained as (χ is the susceptibility)

d =−2E
∑

n=1,2,···

〈0|ex|n〉〈n|ex|0〉
E0 −En

= 2e2

W
〈0|x2|0〉E≡ χE. (6.3)

The above result can be expressed in terms of correlation functions. To understand the general relationship between
linear response and correlation functions, we consider a general quantum system described by H0. We then turn the
perturbation on and off slowly and calculate the linear response using standard time-dependent perturbation theory.
After including a time-dependent perturbation f (t)O1, the total Hamiltonian is given as

H(t)= H0 + f (t)O1, (6.4)

Here, f (t) = 0 for t less than a starting time. To obtain the response of an H0 eigenstate |ψn〉 under the perturbation
f (t)O1, we start with |ψn〉 at t−∞ =−∞. Then, at a finite time t,

|ψn(t)〉 =Texp
(
−i

∫ t

−∞
dt′H(t′)

)
|ψn〉, (6.5)

— PAGE 24 OF 30 —



where T is the time-ordering operator which puts the latest operator on the leftest side. We can expand |ψn(t)〉 to first
order in O1 as,

|ψn(t)〉 = exp
(
−i

∫ t

−∞
dt′H0

)
|ψn〉+δ|ψn(t)〉, (6.6)

where

δ|ψn(t)〉 =−i
∫ t

−∞
dt′ f (t′)e−iH0(t−t′)O1e−iH0(t′−t−∞)|ψn〉 =−i

∫ t

−∞
dt′ f (t′)e−iH0(t−t−∞) eiH0(t′−t−∞)O1e−iH0(t′−t−∞)︸                             ︷︷                             ︸

O1(t′)

|ψn〉 (6.7)

To obtain the change of the physical quantity O2 in the response to the perturbation f (t)O1, we calculate

δ〈ψn(t)|O2|ψn(t)〉 ≡〈ψn(t)|O2|ψn(t)〉−〈ψn|eiH0(t−t−∞)O2e−iH0(t−t−∞ |ψn〉

≈− i
∫ t

−∞
dt′ f (t′)〈ψn|[O2(t),O1(t′)]|ψn〉+ · · ·

=
∫ ∞

−∞
dt′D(t, t′) f (t′), (6.8)

where D(t, t′) is the response function defined by

iD(t, t′)=Θ(t− t′)〈ψn|[O2(t),O1(t′)]|ψn〉. (6.9)

At zero temperature, one can take |ψn〉 to be the ground state |ψ0〉. If H0 is time independent, then D(t, t′) would be a
function of t− t′ only, which could be written as D(t− t′). The response δ〈O2〉 for the ground state is given by

δ〈O2〉 =
∫ ∞

−∞
dt′D(t− t′) f (t′). (6.10)

The factor Θ(t− t′) in D(t− t′) tells only when t > t′ it is nonzero, implying the retarded nature.
We now use the formula (6.10) to deal with the dipole momentum of the above harmonic oscillator. In this case, −eE

plays the role of f (t) and O2 =O1 = ex, so the response function is

D(t− t′)=−iΘ(t− t′)〈0|[x(t), x(t′)]|0〉 =−2〈0|x2|0〉Θ(t− t′)sinW(t− t′). (6.11)

Moreover, we should turn on the electric field slowly in the sense that E(t)=Ee−ε|t|, therefore

d =
∫ ∞

−∞
dt′e2D(t− t′)eεt

′
(−E)=−e2

∫
dtD(t)E= 2e2

W
〈0|x2|0〉E. (6.12)

If we introduce the Fourier transform of D(t) as

D(ω)=
∫

dtD(t)eiωt, (6.13)

then d =−e2D(ω= 0)E. We see that the linear response of an electric dipole to an electric field is related to the correlation
of the dipole operator ex. In fact, all of the other linear responses have a similar structure, namely the coefficients of the
linear responses can be calculated from the correlation functions of appropriate operators, e.g., the conductivity can be
calculated from the correlation function of the current operators. A few examples:

(a) Density: the corresponding operator is ψ†ψ and the response function is charge susceptibility.

(b) Spin density, then the operator and response function are ψ†
a~σabψb and spin susceptibility, respectively.

(c) For current density, we have (e/m)ψ†(−i∇− eA)ψ for the operator and the response function is conductivity.

The retarded response function (6.9) could be generalized to finite temperature,

iDR(t− t′)=∑
n
Θ(t− t′)〈ψn|[O(t),O(t′)]|ψn〉 e−βEn

Z
≡Θ(t− t′)〈[O(t),O(t′)]〉, (6.14)

where Z is the partition function and subscript “R” is added, (6.14) is often called the Kubo Formula. In the remaining
of this section we take O2 =O1 =O, and 〈· · · 〉 indicates the ensemble average. Then a similar formula as (6.10) could be
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written out,

〈O(t)〉 = 〈O〉+
∫

dtD(t− t′) f (t′). (6.15)

We define the correlation C(t− t′) as

C(t− t′)= 〈O(t)O(t′)〉 =
∫

dω
2π

e−iω(t−t′)C(ω). (6.16)

Therefore C(t)= 〈O(t)O(0)〉 represents the fluctuation of the operator O after time t.
Inserting a complete set of energy eigenstates |n〉 of H with energy En and considering gives

〈n|O(t)|m〉 = 〈n|eiHtOe−iHt|m〉 = e−it(Em−En)〈n|O|m〉, (6.17)

we can write the correlation function as

C(t− t′)= ∑
n,m

e−βEn

Z
〈n|O(t)|m〉〈m|O(t′)|n〉 = ∑

n,m

e−βEn

Z
|〈n|O|m〉|2e−i(Em−En)(t−t′). (6.18)

The frequency-dependent correlation function can be written

C(ω)=
∫

dteiωtC(t)= ∑
n,m

e−βEn

Z
|〈n|O|m〉|22πδ(Em −En −ω). (6.19)

Using the similar technique, we can write out the spectral decomposition of the retarded response function,

iDR(t− t′)=Θ(t− t′)
∑
n,m

e−βEn − e−βEm

Z
|〈n|O|m〉|2e−i(Em−En)(t−t′), (6.20)

equivalently, we have

DR(t)=−iΘ(t)
∑
n,m

e−βEn − e−βEm

Z
|〈n|O|m〉|2e−it(Em−En). (6.21)

By introducing the spectral function (the meaning of D will become clear later)

D(ω)=−π
(
1− e−βω

) ∑
n,m

e−βEn

Z
|〈n|O|m〉|2δ(ω− (Em −En)), (6.22)

the retarded response function becomes,

DR(t)= i
∫

dω
π

e−iωtΘ(t)D(ω). (6.23)

Fourier transforming this result, one could read off,

DR(ω)=
∫

dω′

π

D(ω′)
ω′−ω− iε

. (6.24)

This is know as a Kramers–Kronig relation, which could be used to extend the response function into the complex plane
by writing

D(z)=
∫

dω′

π

D(ω′)
ω′− z

. (6.25)

We call this the dynamical susceptibility. If one can do an experiment to determine how much the system absorbs at
all frequencies, then from this information one can determine the response of the system at zero frequency, which is
known as the thermodynamic sum rule. When we evaluate D(z) just above the real axis, we get the retarded response
function DR = D(ω+ iε). The upper half-plans is therefore the analytic extension of DR(ω). When considering about the
lower half-plane, the concept of advanced response function emerges such that DA(ω)= D(ω− iε). From the definition of
D(z), we could find that its poles are located exclusively along the real axis at z =ω′, so that D(z) is analytic everywhere
except the real axis. Substituting the basic relation

1
ω−ω′± iε

=P
(

1
ω−ω′

)
∓πiδ(ω−ω′), (6.26)
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where P denotes the principal part, we can obtain

D(ω± iε)=
∫

dω′

π
P

(
1

ω′−ω
)

D(ω′)± iD(ω). (6.27)

So that the real part of D(z) is continuous across the real axis, but the dissipative imaginary part has a discontinuity:

D(ω)≡ ImD(ω+ iε)= 1
2i

[D(ω+ iε)−D(ω− iε)]= i
2

[D(ω− iε)−D(ω+ iε)] (6.28)

We often introduce the notations D(ω) = ReD(ω)+ iImD(ω) ≡ D′(ω)+ iD′′(ω). The imaginary part D′′(ω) is called the
dissipative or absorptive part of the response function. It is also known as the spectral function, which will become
apparent after we discuss Green’s function theories in the next section.

EXERCISE 29: Show the real (imaginary) part of the response function is even (odd), and argue the imaginary part is dissipative.
EXERCISE 30: Show that the Kramers–Kronig relation could also be written in the following form,

ReD(ω)=P
∫ +∞

−∞
dω′
π

ImD(ω′)
ω−ω , ImD(ω)=−P

∫ +∞

−∞
dω′
π

ReD(ω′)
ω−ω , (6.29)

implying the two parts are not independent.

Combining (6.19) and (6.21) leads to

C(ω)=−2[1+nB(ω)]ImD(ω), nB = 1
eβω−1

. (6.30)

This is the famous fluctuation–dissipation theorem, nB is the Bose distribution. We see explicitly two terms contribute
to the fluctuations, namely the nB(ω) factor is due to thermal effects while the “1” can be thought of as due to inherently
quantum fluctuations. As usual, the classical limit occurs for high temperatures with βω¿ 1 where nB ≈ kBT/ω. In
this regime, the fluctuation–dissipation theorem reduces to its classical counterpart C(ω)=−2kBTImD(ω)/ω.

The fluctuation–dissipation theorem could be established in a classical harmonic oscillator. Suppose that thermal
fluctuations give rise to a random force, acting on the oscillator according to the equation of motion,

mẍ+mW2x+γẋ = F(t), (6.31)

here γ> 0 is the damping coefficient. Fourier transforming both sides and considering
∫

x(n)eiωtdt = (−iω)nx(ω), we may
obtain the equation of motion in ω space,

x(ω)= χ(ω)F(ω), χ(ω)= 1
m(W2 −ω2)− iωγ

. (6.32)

Here χ(ω) is the response function or susceptibility to the external force. The imaginary part of the susceptibility is,

χ′′(ω)= ωγ

m2(W2 −ω2)2 +ω2γ2 = |χ(ω)|2ωγ, (6.33)

which governs the dissipation (since it is proportional to γ). Over long time periods, one expects that the two-point
correlation function to be purely a function of the time difference, namely S(t, t′) = 〈x(t)x(t)′〉 = 〈x(t− t′)x(0)〉. The power
spectrum of fluctuations 〈|x(ω)|2〉 is defined as the Fourier transform of 〈x(t)x(0)〉, therefore its inverse transform gives

〈x(t)x(t′)〉 =
∫

dω
2π

e−iω(t−t′)〈|x(ω)|2〉. (6.34)

Under thermal equilibrium, the equipartition equilibrium theorem tells us that 2−1mW2〈x2〉 = kBT/2, or equivalently

〈x2〉 =
∫

dω
2π

〈|x(ω)|2〉 =
∫

dω
2π

|χ(ω)|2〈|F(ω)|2〉 = kBT
mW2 . (6.35)

Since the integration over ω is very sharply peaked around |ω| = W , one can replace 〈|F(ω)|2〉 → 〈|F(W)|2〉 when doing
the relevant calculations. Replacing |χ(ω)|2 with χ′′(ω)/ωγ, we then have

kBT
mW2 = 〈|F(W)|2〉

2γ

∫
dω
π

χ′′(ω)
ω

= 〈|F(W)|2〉
2γmW2 . (6.36)
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So the spectrum of the fluctuations is determined by the damping force (viscosity γ) as,

〈|F(W)|2〉 = 2γkBT. (6.37)

If we assume that the noise spectrum depends only on the properties of the damping medium in which the oscillator is
embedded, and not fundamentally on the properties of the oscillator itself, (6.37) is expected to hold for any frequency
W . In this sense, we conclude that the power spectrum of the force is a flat function of frequency. This consequently
implies that in thermal equilibrium the force coupling the system to the environment is a source of white noise of an
amplitude which depends on the viscosity of the medium,

〈F(t)F(t′)〉 =
∫

dω
2π

e−iω(t−t′)〈|F(ω)|2〉 = 2γkBTδ(t− t′). (6.38)

The noise spectrum of fluctuations is given by

S(ω)≡ 〈|x(ω)|2〉 = |χ(ω)|2〈|F(ω)|2〉 = 〈|F(ω)|2〉χ
′′(ω)
ωγ

= 2kBT
ω

χ′′(ω), (6.39)

or inversely
fluctuations︷               ︸︸               ︷

S(t)= 〈x(t)x(0)〉 = 2kBT
∫

dω
2π

e−iωt χ′′(ω)
ω︸   ︷︷   ︸

dissipation

, (6.40)

which says that fluctuations in a classical harmonic oscillator are directly related to the dissipative response function
via the fluctuation–dissipation theorem. This form of fluctuation–dissipation theorem is consistent with (6.30) at high
temperatures (using S ↔−C for the notation consistency).

EXERCISE 31: Solve the damped harmonic oscillator (with F(t)= 0) under appropriate initial conditions; use the imaginary part
χ′′(ω) to obtain the real part χ′(ω) via the Kramers–Kronig relation; define tanΦ(ω)= χ′′(ω)/χ′(ω), what’s the meaning of Φ?

EXERCISE 32: Show that in hydrodynamic problems, the response function takes the form of

Dsound(ω)∼ 1

ω2 −v2
s k2

, (6.41)

where vs is the speed of sound. Argue how the viscosity could be obtained from the response function.
EXERCISE 33: Define the advanced response function, iDA(t− t′)=Θ(t′− t)〈[O(t),O(t′)]〉, show that

DA(ω)=
∫

dω′
π

ImD(ω′)
ω′−ω+ iε

. (6.42)

What’s the physical meaning of this response function?

Finally, we derive the imaginary-time response function. The partition function in the presence of a perturbation of
the form f (τ)O is evaluated as,

Z = Z0

〈
Texp

(
−

∫ β

0
dτ f (τ)O(τ)

)〉
. (6.43)

The expectation value of O(τ) is then given by to linear order,

〈O(τ)〉 = δ ln Z
δ f (τ)

=

〈
TO(τ)exp

(
−

∫ β

0
dτ′ f (τ′)O(τ′)

)〉
〈

Texp
(
−

∫ β

0
dτ′ f (τ′)O(τ′)

)〉 ≈ 〈O〉−
∫ β

0
dτ′

[〈
TO(τ)O(τ′)

〉−〈O〉2]
f (τ′). (6.44)

Therefore,

〈O(τ)〉 = 〈O〉−
∫ β

0
dτ′D(im)(τ−τ′) f (τ′), D(im)(τ−τ′)= 〈

TO(τ)O(τ′)
〉−〈O〉2. (6.45)

Using the similar technique as in the real-time situation, one can show

D(im)(iωn)=
∫

dω
π

1
ω− iωn

ImD(im)(ω), (6.46)
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where ωn is the Matsubara frequency. Compared with (6.25), we find that (6.46) is nothing more than the dynamical
susceptibility D(z), evaluated at z = iωn. In other words, D(im)(iωn) is the unique analytic extension of D(ω) into the
complex plane. It therefore provides a procedure to calculate response functions, namely writing Dim(iωn) in the form
(6.46), and using this to read off D′′(ω) which in turn reconstructs the dynamical response function via (6.25).

G General Theories on Propagators and Spectral Functions

RELEVANT REFERENCE:

• L. Kadanoff and G. Baym, Quantum Statistical Mechanics, Westview Press, 1962, Chapters 1-6.
• A. Fetter and J. Walecka, Quantum Theory Many-particle Systems, Dover Press, 2003, Chapters 3 and 4.
• J. Negele and H. Orland, Quantum Many-particle Systems, Westview Press, 1988, Chapter 5.

H Spectroscopy, Nucleon Momentum Distribution

RELEVANT REFERENCES:

• A. Abrikosov, L. Gorkov, and I. Dzyaloshinki, Methods of Quantum Field Theory in Statistical Physics, Dover Press, 1975.
• W. Dickhoff and D Van Neck, Many-body Theory Exposed! Propagator Description of Quantum Mechanics in Many-body Sys-

tems, 2nd Edition, World Scientific Press, 2008, Chapters 7 and 16.
• J. Negele and H. Orland, Quantum Many-particle Systems, Westview Press, 1988, Chapter 6.
• A. Fetter and J. Walecka, Quantum Theory Many-particle Systems, Dover Press, 2003, Chapter 7.
• P. Coleman, Introduction to Many-body Physics, Cambridge University Press, 2015, Chapter 6.
• A. Migdal, The Momentum Distribution of Interacting Fermi Particles, Sov. Phys. JETP 5, 333 (1957).
• V. Galitiskii and A. Migdal, Application of Quantum Field Theory Methods to the Many Body Problem, Sov. Phys. JETP 34, 96

(1958).
• V. Belyakov, The Momentum Distribution of Particles in a Dilute Fermi Gas, Sov. Phys. JETP 13, 850 (1961).
• L. Lapikas, Quasi-elastic Electron Scattering off Nuclei, Nucl. Phys. 553, 297 (1993).
• O. Hen et al., Nucleon-nucleon Correlations, Short-lived Excitations, and the Quarks within, Rev. Mod. Phys. 89, 045002 (2017).
• S.N. Tan, Energetics of a Strongly Correlated Fermi Gas, Ann. Phys. 323, 2952 (2008); Large Momentum Part of a Strongly

Correlated Fermi Gas, 323, 2971 (2008); Generalized Virial Theorem and Pressure Relation for a Strongly Correlated Fermi Gas
323, 2987 (2008).

• J. Sobota, Y. He, and Z.X. Shen, Angle-resolved Photoemission Studies of Quantum Materials, Rev. Mod. Phys. 93, 025006
(2021).

I Real-time Green’s Functions, Random Phase Approximation

RELEVANT REFERENCE:

• L. Kadanoff and G. Baym, Quantum Statistical Mechanics, Westview Press, 1962, Chapters 6 and 7.
• G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-body Theory of Quantum Systems: a Modern Introduction, Cam-

bridge University Press, 2013, Chapters 1-9.
• G. Baym and L. Kadanoff, Conservation Laws and Correlation Functions, Phys. Rev. 124, 287 (1961).
• P. Danielewicz, Quantum Theory of Nonequilibrium Processes. I, Ann. Phys. 152, 239 (1984).

J Kadanoff–Baym Equations: General Nonequilibrium Cases

RELEVANT REFERENCE:

• L. Kadanoff and G. Baym, Quantum Statistical Mechanics, Westview Press, 1962, Chapters 5 and 8.
• G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-body Theory of Quantum Systems: a Modern Introduction, Cam-

bridge University Press, 2013, Chapters 1-9.
• P. Danielewicz, Quantum Theory of Nonequilibrium Processes. I, Ann. Phys. 152, 239 (1984).

— PAGE 29 OF 30 —



K Extension: Schwinger–Keldysh Contour

RELEVANT REFERENCE:

• J. Schwinger, Brownian Motion of a Quantum Oscillator, J. Math. Phys. 2, 407 (1961).
• L. Keldysh, Diagram Technique for Nonequilibrium Processes, Sov. Phys. JETP 20, 1018 (1965).
• K.C. Chou et al., Equilibrium and Nonequilibrium Formalisms Made Unified, Phys. Rep. 118, 1 (1985).
• E. Calzetta and B.L. Hu, Nonequilibrium Quantum Fields, Closed Time Path Effective Action, Wigner Function and Boltzmann

Equation, Phys. Rev. D 37, 2878 (1988).

— PAGE 30 OF 30 —


	Propagators: Free Particle and Harmonic Oscillator
	Green's Function: Sum Rules for a 2D Harmonic Oscillator
	Density Matrix (Elementary Introduction)
	Imaginary Time it, Path Integral Simulations
	Matsubara Frequency, Thermal Mass of a Scalar Field
	Linear Perturbations, Retarded Response and Correlation Functions
	General Theories on Propagators and Spectral Functions
	Spectroscopy, Nucleon Momentum Distribution
	Real-time Green's Functions, Random Phase Approximation
	Kadanoff–Baym Equations: General Nonequilibrium Cases
	Extension: Schwinger–Keldysh Contour

