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— Course Description —

This course offers an introduction to the fundamental concepts of algorithms and several widely used
methods in machine learning, state estimation/inference, and modern data science. A key objective is to help
students understand the underlying principles and theoretical foundations of machine learning algorithms.
Topics covered include basic probability and statistical techniques, simulation methods, optimization strate-
gies, and essential ideas from high-dimensional problems and reconstruction algorithms. To keep pace with
the rapid evolution of big data and modern analytics, the course also explores a selection of contemporary
algorithms developed for large-scale data processing and high-dimensional statistical analysis.

— Target Audience —

This course is intended for advanced undergraduate and graduate students in physics, computer science,
data science, or related fields who are interested in the foundations and practical applications of machine
learning and modern data analysis. It is also suitable for researchers and professionals seeking to strengthen
their understanding of algorithmic methods in state estimation, optimization, computer vision and physics.
A basic background in calculus, linear algebra, and probability is recommended, though key concepts will be
reviewed as needed throughout the course. You are all very welcome to attend the course!

— Exercises and Problems —

Each class will last approximately 90 to 135 minutes. There will be two types of exercises: analytical prob-
lems (such as estimations or derivations) and programming assignments. The analytical problems are rel-
atively straightforward, while the programming tasks require more thoughtful design and implementation.
Each week, 1-2 programming exercises will be assigned to reinforce the key concepts covered in class. These
exercises are designed to closely reflect practical techniques in areas such as physics, state estimation, geo-
metric reasoning under uncertainty, and optimization.

— Course Grading Policy —

(a) Homework: 10 points/per module × 5 modules=50 points, except Module F.

(b) Quiz: 10 points/per module × 5 modules=50 points, except Module F.

— Detailed Schedules (Preliminary) —

Module–A Basis of Calculus, Probability and Statistics
(微积分、概率与统计基础)

LECTURE 1 — Course Introduction and Some Examples

(a) method of guess and estimation, period of a simple pendulum system
(b) master theorem, divide-and-conquer, Fibonacci series
(c) fast algorithm for matrix multiplication
(d) solution of the algebraic equation xn(t) = Ω + tx(t)/Λ, x(t) ∈ R+, n ≥ 5, n ∈ N+

— 1 of 5 —



LECTURE 2 — Calculus and Concept of Sampling

(a) Taylor’s expansion of a function
(b) five-point algorithm
(c) gradient and Hessian of a matrix
(d) Monte Carlo method for integration
(e) estimating π by hit-or-miss and by Markov chain sampling

LECTURE 3 — Elementary Introduction to Statistics and Probability

(a) mean and variance of a distribution
(b) Bayes’ theorem
(c) moment-generating function
(d) random variable generation, Box–Muller method

Module–B Optimization, Learning from Data and Bias–variance Trade–off
(基本优化算法、方差-偏差分解)

LECTURE 4 — First-order Optimization Algorithms

(a) gradient descent search, exact-line search
(b) Jensen’s inequality for convex function
(c) regularization, singular behavior of Hessian
(d) concept of momentum
(e) AdaGrad, RMSProp, Adam, hypergradient

LECTURE 5 — Trade–off between Bias and Variance

(a) linear fitting, loss function
(b) nonlinear curve fitting, learning model
(c) no–free–lunch theorem, trade–off between bias and variance
(d) stochastic gradient descent
(e) geometrical error learning model

LECTURE 6 — Annealing and Metropolis Algorithm

(a) thermal motion, Boltzmann’s distribution
(b) simulated (thermal) annealing
(c) rejection sampling, importance sampling
(d) fast annealing on finding the minimum of a multi-dimensional function
(e) 2D Ising model: simulations

LECTURE 7 — Convergent Analysis and Large-scale Sparse Matrix

(a) some facts related to the Hessian
(b) search algorithm directly using Hessian
(c) Newton–Raphson method, order of convergence
(d) Gauss–Newton and Levenberg–Marquardt schemes, applicable conditions
(e) conjugate gradient search

Module–C State Estimation/Inference and Data-driven Algorithms
(状态估计/推断与数据驱动的算法)

LECTURE 8 — Kalman Filter as a Data-driven Optimization Method

(a) Kalman filter (without analytical derivations)
(b) nonlinear and non-Gaussian extensions
(c) bias estimation for the learning model fw(x) = e−wx

LECTURE 9 — Bayesian Curve Fitting as a State Estimation Problem

(a) high-dimensional Gaussian, decomposition of Gaussian
(b) Bayesian consideration on coin drawing experiment
(c) linear curve fitting using Bayesian calculation

LECTURE 10 — 3D Reconstruction from 2D Images for Computer Vision Problems
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(a) depth determination from stereo pairs
(b) picture of 3d reconstruction, motion determination, SLAM
(c) least squares, weighted least squares
(d) bundle adjustment (conceptual introduction)

Module–D High-dimensional Problems, Randomized Algorithms and Fast Computing
(高维问题导论、随机算法与快速计算)

LECTURE 11 — Clustering, Robustness and Sparsity

(a) concept of classification, effects of dimensions
(b) k-means, k-center, k-median
(c) robustness and sparsity, LASSO
(d) Huber loss with ℓ-1 constraint, the optimization algorithm

LECTURE 12 — High Dimensions, Singular-value Decomposition and Best-fit Subspace

(a) law of large numbers, random data in high dimensions
(b) properties of a high-dimensional ball
(c) singular value decomposition, a greedy algorithm
(d) basic principle component analysis
(e) analysis on the MNIST dataset and whitening of noise data

LECTURE 13 — Randomized Matrix Multiplication, Integer Partition and Phase Transition

(a) massive data problem
(b) distinct elements of a set
(c) CUR decomposition
(d) saddle-point approximation
(e) Laplace’s method for integration

Module–E Fast Fourier Transform and Solvers for Partial Differential Equations
(快速 Fourier变换与偏微分方程的离散化计算)

LECTURE 14 — Fast Fourier Transform for Data Processing

(a) product of polynomials
(b) fast Fourier transform for signal processing
(c) convolution of signals

LECTURE 15 — Differencing Schemes for Partial Differential Equations

(a) Euler search, Runge–Kutta algorithm
(b) convection equation, differencing schemes and stability conditions
(c) up-wind method
(d) random walk for Laplaces’ equation

Module–F A Primer for Quantum Algorithms
(量子算法基础)

LECTURE 16 — Review of Basis of Quantum Mechanics

(a) wave nature of particles and complex amplitude
(b) uncertainty relation between momentum and position
(c) operator and wave function
(d) amplitude as sum over histories, example: harmonic oscillator
(e) path integral simulations

LECTURE 17 — Algorithmic Interference

(a) quantum state, qubit, coherence and decoherence
(b) collapse of wave function and entanglement
(c) Shor algorithm and Deutsch’s problem
(d) Gover’s searching algorithm, square-root acceleration
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SPECIAL LECTURE **Renormalization Group, Effective Field Theory and Deep Neural Network
If time permits, I will introduce some modern idea on understanding deep neural net-
work, via the methods of renormalization group and effective field theory.

— Lecture Notes and Selected References —

There will be no designated textbook for the course, but lecture notes will be provided progressively as
the course develops. However, several reference books that offer broad coverage of relevant topics may be
helpful for those seeking a deeper understanding (books with “♠” are recommended). You do not need to
read everything.

(1) I. Jolliffe, Principal Component Analysis, Springer, 1986.
(2) R. Neal, Bayesian Learning for Neural Networks, Springer, 1996.
(3) G. Cowan, Statistical Data Analysis, Oxford, 1998.
(4) E. Lehmann and G. Casella, Theory of Point Estimation, Springer, 1998.
(5) M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon, 1999.
(6) B. Schölkopf and A. Smola, Learning with Kernels, Cambridge, 2002.
(7) ♠D. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge, 2003.
(8) S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, 2004.
(9) R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge, 2004.

(10) ♠J. Kleinberg and E. Tardos, Algorithm Design, Pearson, 2005.
(11) C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning , MIT, 2005.
(12) S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT, 2005.
(13) ♠C. Bishop, Pattern Recognition and Machine Learning , Springer, 2006.
(14) G. Casella and R. Berger, Statistical Inference, Thompson, 2006.
(15) T. Cover and J. Thomas, Elements of Information Theory, Wiley, 2006.
(16) ♠W. Krauth, Statistical Physics: Algorithms and Computations, Oxford, 2006.
(17) ♠J. Nocedal and S. Wright, Numerical Optimization, Springer, 2006.
(18) D. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford, 2006.
(19) ♠♠W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes, Cambridge, 2007.
(20) T. Hastie, R. Tibshirani, and J. Friedmann, The Elements of Statistical Learning , Springer, 2008.
(21) D. Koller and N. Friedman, Probabilistic Graphical Models, MIT, 2009.
(22) L. Wasserman, All of Statistics, Springer, 2010.
(23) C. Moore and S. Mertens, The Nature of Computations, Springer, 2011.
(24) D. Barber, Bayesian Reasoning and Machine Learning , Cambridge, 2012.
(25) R. Horn and C. Johnson, Matrix Analysis, Cambridge, 2012.
(26) Y. Mostafa, M. Ismail, and H.T. Lin, Learning from Data, AMLBook, 2012.
(27) ♠S. Prince, Computer Vision: Models, Learning, and Inference, Cambridge, 2012.
(28) S. Aaronson, Quantum Computing Since Democritus, Cambridge, 2013.
(29) A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin, Bayesian Data Analysis, CRC, 2013.
(30) ♠♠G. Golub and Van C. Loan, Matrix Computations, John Hopkins, 2013.
(31) I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning , MIT, 2016.
(32) R. Vidal, Y. Ma, and S. Sastry, Generalized Principal Component Analysis, Springer, 2016.
(33) M. Mitzenmacher and E. Upfal, Probability and Computing , Cambridge, 2017.
(34) M. Wilde, The Quantum Information Theory, Cambridge, 2017.
(35) R. Vershynin, High-dimensional Probability, Cambridge, 2018.
(36) M. Wainwright, High-dimensional Statistics, Cambridge, 2018.
(37) G. Strange, Linear Algebra and Learning from Data, Cambridge, 2019.
(38) ♠A. Blum, J. Hopcroft, and R. Kannan, Foundations of Data Science, Cambridge, 2020.
(39) M. Deisenroth,Mathematics for Machine Learning , Cambridge, 2020.
(40) T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity, Chapman & Hall, 2020.
(41) S. Skiena, The Algorithm Design Manual, Springer, 2020.
(42) L. Böttcher and H. Herrmann, Computational Statistical Physics, Cambridge, 2021.
(43) S. Brunton and J. Kutz, Data-Driven Science and Engineering , Cambridge, 2022.

— 4 of 5 —



(44) ♠♠T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, MIT, 2022.
(45) J. Wright and Y. Ma, High-dimensional Data Analysis with Low-dimensional Models, Cambridge, 2022.
(46) ♠S. Prince, Understanding Deep Learning , MIT, 2023.
(47) A. Torralba, P. Isola, and W. Freeman, Foundations of Computer Vision, MIT, 2024.
(48) S. Dorogovtsev and J. Mendes, The Nature of Complex Network, Oxford, 2025.
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Lecture 5
Introduction to Algorithms for Data Science and Physics @IMP/Fudan

First Lesson from “Learning from Data”, Curve Fitting, and “No-free-lunch” Theorem
Dr. Bao-Jun Cai 9/9/2025

Draft Version

Key Concepts of This Lecture
parameter estimation for the linear fitting function fθ⃗(x) = ax + b from data
parabolic loss function J(θ⃗) = 2−1 ∑

[ fθ⃗(x(i)) − y(i)]2 and its optimization
goodness of learning model↔ decomposition of bias, variance and noise
penalty term J → J + λg, data and belief in data, avoidance of singularity
normal equation Φ⃗⊤Φ⃗w = Φ⃗⊤y and its stochastic gradient descent search

§1 Problem of Linear Curve Fitting

Assume that one has m data points (x(i), y(i)) Notations. In our notes, we use the su-
perscript with a parentheses to num-
ber the data points. In addition, “m”
denotes the number of data samples
while “n” is used for denoting the num-
ber of parameters in the model. Con-
ventionally, m ≫ n or equivalently
n/m ≪ 1; in some high-dimensional
problems, however n ≫ m or n/m ≫ 1.

with i = 1 ∼ m, here the physical
or the realistic relation between x(i) and y(i) is assumed to be linear, e.g., the re-
lation between the velocity v and the acceleration a as v = at. Since there exists
measurement errors, the measured or the experimental relation between x(i)

and y(i) is not exactly linear. In this case, one can still use the linear regression
to obtain the model parameters from the noisy data.

learning model f~θ(x) = ax + b

noisy measurements︸

︷︷

︸

(x(i), y(i))

ǫ(i) = f~θ(x
(i))− y(i)

Fig. 1: Sketch for the linear regression, here the error for the data sample x(i) is defined as the
difference between the model prediction fθ⃗(x(i)) and measurement y(i).

To this end, Example. For two measurements, (1, 2)
and (2, 5), i.e., x(1) = 1, y(1) = 2 and x(2) =

2, y(2) = 5, and m = 2, we have

⟨x⟩ =1
2

(
x(1) + x(2)

)
= 3/2,

⟨y⟩ =1
2

(
y(1) + y(2)

)
= 7/2,

⟨x2⟩ =1
2

(
x(1),2 + x(2),2

)
= 5/2,

⟨y2⟩ =1
2

(
y(1),2 + y(2),2

)
= 29/2,

⟨xy⟩ =1
2

(
x(1)y(1) + x(2)y(2)

)
= 6.

we assume that the model is linear and denote it by fθ⃗(x) = ax+b
with a and b two parameters to be determined by the linear regression, the pa-
rameters are collectively denoted by θ⃗ = (a, b). In order to obtain the model
parameter θ⃗, one needs to minimize the error between the model prediction
for the data x(i), i.e., fθ⃗(x(i)), and the measurement y(i). One of the frequently-
used error is the squared loss, i.e., ( fθ⃗(x(i)) − y(i))2, here fθ⃗(x(i)) − y(i) is called the
algebraic distance between the model prediction and the measurement (which
could take either positive or negative values), see Fig. 1 for the sketch of alge-
braic distance. The total loss is defined as the sum of the error of all samples

J(θ⃗) =
1
2

m∑
i=1

[
fθ⃗(x(i)) − y(i)

]2
. (1)

The factor 1/2 is irrelevant here. Other forms of the loss function exist,
e.g., see the first problem of this lec-
ture.

It should be pointed out that J is a function of

θ⃗ or equivalently of a and b, instead of x(i) or y(i).
In order to obtain the parameters a and b, one needs to minimize the func-

tion J. Since J is a convex function (like the parabolic function x2), the min-
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imization of J is reduced to ∂J/∂a = 0 and ∂J/∂b = 0, these two equations
determine the optimized parameters a∗ and b∗. By expanding the loss function
J(θ⃗), we obtain

J(θ⃗) =
m
2

[
⟨x2⟩a2 + b2 + ⟨y2⟩ + 2⟨x⟩ab − 2⟨xy⟩a − 2⟨y⟩b

]
, (2)

where the data sample averages are defined by,

0 1 2 3 4 5
x

0

4

8

12

16

y

a∗x+ b ∗

3x

Fig. 2: The simulated samples, the fit-
ting line a∗x + b∗ and physical model.
The number of data samples is m = 50.

⟨x⟩ = 1
m

m∑
i=1

x(i), ⟨y⟩ = 1
m

m∑
i=1

y(i), (3)

⟨x2⟩ = 1
m

m∑
i=1

x(i),2, ⟨y2⟩ = 1
m

m∑
i=1

y(i),2, ⟨xy⟩ = 1
m

m∑
i=1

x(i)y(i), (4)

which could be calculated once the measurement is available. After some long
but straightforward calculations, one could prove that the a and b are given by,

a∗ =
⟨xy⟩ − ⟨x⟩⟨y⟩
⟨x2⟩ − ⟨x⟩2 , b∗ =

⟨x2⟩⟨y⟩ − ⟨x⟩⟨xy⟩
⟨x2⟩ − ⟨x⟩2 . (5)

In fact, if y ∼ x, the numerator of b∗ ∼ ⟨x⟩⟨x2⟩ − ⟨x2⟩⟨x⟩ = 0.
We simulate the model and prepare the data as follows: Assume that the

physical model is given by y = 3x, i.e., ideally a is 3 and b is zero. The coefficients a∗ could be written as

a∗ = cov[x, y]/var[x],

and consequently the optimal predic-
tion for the output is given by

y∗ =E[y] +
cov[x, y]

var[x]
[x − E[x]] .

The mean square error (MSE) of obser-
vation is define as

∆∗ =E
[
y − y∗]2

= var[y]
[
1 − ρ2[x, y]

]
,

where ρ[x, y] is the correlation between
x and y. Consequently, the larger (in
absolute value) the correlation coeffi-
cient the smaller the MSE of observa-
tion. In particular if |ρ(x, y)| = 1 then
∆∗ = 0, on the other hand if x’s and
y’s are uncorrelated, ∆∗ = var[y] and
y∗ = E[y].

The data is
generated through y(i) = a′x(i) with a′ = 3 ± ∆ where ∆ denotes the noise, e.g., ∆
is a zero-mean random variable with Gaussian distribution ∆ ∼ N (0, σ2), and
consequently a′ = N (3, σ2). In our calculations, we fix σ2 = 0.3. In addition,
the data is generated by using this a′ and the x(i) uniformly distributed within
0 and 5, i.e., x(i) ∼ Unif[0, 5]. In Fig. 2 we show the simulated samples (m = 50),
the fitting line a∗x + b∗ and the physical model used by randomly running the
code. It is clearly shown that the “learned model a∗x + b∗” has some deviation
from the physical model (here 3x). Specifically, b∗ is not exactly equal to zero.
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Fig. 3: The k-dependence of a∗(k,m), b∗(k,m), SEM(a∗, k,m) and SEM(b∗, k,m), m = 10 is fixed.

We can independently run the simulation for k times and obtain the a∗ and
b∗ for k times. Consequently, the k-averages of a∗ and b∗ are calculated as,

a∗(k,m) ≡ 1
k

k∑
j=1

a∗,( j), b∗(k,m) ≡ 1
k

k∑
j=1

b∗,( j). (6)
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The corresponding k-dependence of the a∗ and b∗ is shown in the upper two
panels of Fig. 3 where m = 10 is fixed for each simulation. EXERCISE 1: Explore the quasi-linear

dependence of Fig. 3.
As the k increases

the k-average of the learning parameters eventually approach to the physical
values. Similarly, by defining the standard error of the mean (SEM) of a∗ and b∗,
we obtain

SEM(a∗, k,m) =

√√√
1
k

1
k − 1

k∑
j=1

(
a∗,( j) − a∗

)2
, (7)

SEM(b∗, k,m) =

√√√
1
k

1
k − 1

k∑
j=1

(
b∗,( j) − b∗

)2
, (8)

one could study, e.g., the large-k behavior of the overall errors encapsulated
in the learning parameters. We show in the lower two panels of Fig. 3 the k-
dependence of the SEM for a∗ and b∗ while fixing m = 10. From the figure it is
clearly shown that in the log-log plot the overall tendency is quasi-linear.

§2 Basic Concepts of Machine Learning

The linear learning model fθ⃗(x) = ax + b is simple and convenient to imple-
ment, however it is sometimes too simple to capture other features encapsu-
lated in the data, e.g., the irregularity and/or the nonlinearity, see Fig. 4 for an
example. It is certain that the linear learning model could hardly work for these
situations, where one needs to develop new learning techniques encapsulating
the nonlinearity of the features.

Fig. 4: Nonlinear curve fitting.
A few basic concepts are necessarily needed to be introduced. There is a

physical model, denoted by fphys(x) (generally the input data x has the vector
nature), which is unknown in advance and maybe even very complicated. Al-
though the physical model fphys(x) is unknown, there exist relevant data gener-
ated by the model, and the data always has measurement noise (also unknown).
We denote the data point as (x(i), y(i)), and since there exists noise in the out-
put y(i) generally y(i) , fphys(x(i)). For simplicity here we assume the output is
a scalar. Besides the physical model, a learning model denoted by fw(x) is of-
ten introduced with w a set of parameters characterizing the learning model.
Based on a fixed learning model, one could make a prediction on each input
data x(i) to obtain fw(x(i)). The learning model is an effective approximation of
the physical model since the latter is generally very complicated. Generally, the
prediction fw(x(i)) will be different from the measured output data y(i), and the
basic task in machine learning and/or data analysis/mining is to minimize the
difference between the measurement and the prediction. Consequently, an error
function (or cost/loss function) emerges, characterizing the above difference.

A very frequently-used error function is given by Sometimes we also adopt the abbrevi-
ation for fw(x(i)) as f (i)

w , and under this
notation,

J(w) =
1
2

m∑
i=1

(
f (i)
w − y(i)

)2
.

J(w) =
1
2

m∑
i=1

[
fw(x(i)) − y(i)

]2
, (9)

i.e., the sum of the difference between the prediction ( fw(x(i))) and the mea-
surement (y(i)), which has already been used in the linear learning model, see
(1). This type of optimization is called the least-squares (LS). As similar as in the
linear fitting problem, J(w) is function of the learning parameter w, and not a
function of the measurements (x(i), y(i)). The next task is to minimize the error
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function J(w), and since generally J(w) is a convex function of w, The second order derivative of the loss
function with respect to w j is given by

∂2 J
∂w2

j

=
∂

∂w j

∂

∂w j

1
2

m∑
i=1

[
fw(x(i)) − y(i)

]2


=

m∑
i=1

(
∂

∂w j
fw(x(i))

)2

+

m∑
i=1

(
fw(x(i)) − y(i)

) ∂2

∂w2
j

fw(x(i)).

If the learning model is linear then the
second term is zero at the optimal pa-
rameter, leading to

∂2 J
∂w2

j

=

m∑
i=1

(
∂

∂w j
fw(x(i))

)2

,

which is positive. Even in the situation
where the learning model is nonlinear,
we can still prove that ∂2 J/∂w j > 0, us-
ing the normal equation given in the
following part.

the minimiza-
tion of it is reduced to the condition ∂J(w)/∂w = 0, or equivalently,

∂J(w)/∂w j = 0, j = 0, 1, 2, · · · , n, (10)

where one assumes that there are totally n + 1 parameters namely w0 to wn. It is
necessary to point out that we use two letters “n” and “m” to represent the number
of the learning parameters and the number of data points, respectively. Specif-
ically, if the input data has the scalar nature (i.e., x instead of x), a very general
learning model in data analysis and machine learning is the polynomial of or-
der n, i.e.,

fw(x) = w0 + w1x + w2x2 + · · · + wnxn =

n∑
j=0

w jx j, (11)

here the learning parameter consists of n+ 1 scalars, i.e., w0 to wn. One uses the
measured data points (x(i), y(i)) to study these parameters, which is then called
“learning from data”. Although fw(x) is nonlinear in x, it is still linear in the
parameters w j. In this sense, we still call fw(x) the linear model.

§3 Trade-off between Bias and Variance

Specifically, we have

∂J
∂w j
=

m∑
i=1

(
fw(x(i)) − y(i)

) ∂
∂w j

fw(x(i))

=

m∑
i=1

fw(x(i))x(i), j −
m∑

i=1

y(i) x(i), j

=

m∑
i=1

n∑
j′=0

w j′ x(i), j′+ j −
m∑

i=1

y(i) x(i), j

=

n∑
j′=0

w j′

m∑
i=1

x(i), j′+ j −
m∑

i=1

y(i) x(i), j

=m

 n∑
j′=0

w j′ ⟨x j′+ j⟩ − ⟨x jy⟩
 ,

and the relevant equation is given by
setting it to be zero, i.e.,

n∑
j′=0

w j′ ⟨x j′+ j⟩ = ⟨x jy⟩, j = 0 ∼ n.

We solve the nonlinear curve fitting problem in details to demonstrate the
important features of machine learning, i.e., how could one “learn from data”,
and what to learn?

According to Eq. (10), one can obtain the equations for determining the
model parameters w0, w1, w2, · · · , wn,

⟨1⟩w0 + ⟨x⟩w1 + ⟨x2⟩w2 + · · · + ⟨xn⟩wn = ⟨y⟩,
⟨x⟩w0 + ⟨x2⟩w1 + ⟨x3⟩w2 + · · · + ⟨xn+1⟩wn = ⟨xy⟩,
...,

⟨xn⟩w0 + ⟨xn+1⟩w1 + ⟨xn+2⟩w2 + · · · + ⟨x2n⟩wn = ⟨xny⟩,

(12)

where ⟨1⟩ = m−1 ∑m
i=1 1 = 1, and

⟨xk⟩ = 1
m

m∑
i=1

x(i),k =
1
m

(
x(1),k + x(2),k + · · · + x(m),k

)
, (13)

⟨xky⟩ = 1
m

m∑
i=1

x(i),ky(i) =
1
m

(
x(1),ky(1) + x(2),ky(2) + · · · + x(m),ky(m)

)
. (14)

As a special case, consider n = 1, i.e., for the linear fitting problem, Eq. (12)
becomes ⟨1⟩w0+ ⟨x⟩w1 = ⟨y⟩ and ⟨x⟩w0+ ⟨x2⟩w1 = ⟨xy⟩. EXERCISE 2: Derive the analytical ex-

pressions for w j’s in the case of n = 2
and n = 3, write down the form of F−1.

In addition, Eq. (12) could
be rewritten in the form,

Fw = G, (15)

by introducing EXERCISE 3: Prove F could be written

as Φ⃗⊤Φ⃗ where the element of the ma-
trix Φ⃗ is defined as ϕ ji = ϕ j(x(i)) with
j = 0 ∼ n and i = 1 ∼ m, see Eq. (32).

F =


⟨1⟩ ⟨x⟩ · · · ⟨xn⟩
⟨x⟩ ⟨x2⟩ · · · ⟨xn+1⟩
...

...
. . .

...

⟨xn⟩ ⟨xn+1⟩ · · · ⟨x2n⟩

 , w =


w0
w1
...

wn

 , G =


⟨y⟩
⟨xy⟩
...

⟨xny⟩

 . (16)
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Note that the (n + 1) × (n + 1) matrix F is symmetric, namely Fi j = F ji. The
symmetry properties of F is useful for calculating its inverse.

0.0 0.5 1.0
x

−2

−1

0

1

2

fphys(x) = sin(2πx)

noisy data, sin(2πx(i)) + a(i)

Fig. 5: Data preparation for nonlinear
learning model, ℓ = 0.8.

We similarly prepare the data to be used in the simulation. Here the phys-
ical model is adopted as fphys(x) = sin(2πx) with 0 ≤ x ≤ 1, and we generate
total 10 data points uniformly distributed within this range, i.e., x(i) = i/9, i =
0, 1, 2, · · · , 9, or, x(i) = 0, 1/9, 2/9, · · · , 8/9, 1. The output data y(i) is obtained
from the physical model by including a noise, i.e., y(i) = sin(2πx(i)) + a(i), here
a(i) ∼ Unif[−ℓ, ℓ] is a uniformly distributed random number, see Fig. 5 for the
physical model (shown as the dashed black line) and the generated data points
(as the magenta circles), where ℓ = 0.8 is used. After solving the equation (15),
one obtains the parameter w∗ and consequently the learning model fw∗(x).
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Fig. 6: Learning processes with different n.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9
w∗0 0.19 0.79 0.81 0.23 −0.00 0.10 0.08 0.08 0.08 0.08
w∗1 ∅ −1.21 −1.32 8.11 16.93 7.42 13.99 16.69 −9.48 145.11
w∗2 ∅ ∅ 0.11 −24.74 −69.30 10.00 −71.10 −115.61 412.07 −3158.52
w∗3 ∅ ∅ ∅ 16.57 88.03 −136.10 212.92 476.91 −3503.21 28658.38
w∗4 ∅ ∅ ∅ ∅ −35.73 221.18 −453.31 −1199.76 13815.03 −137275.68
w∗5 ∅ ∅ ∅ ∅ ∅ −102.76 497.20 1585.76 −29673.59 381953.29
w∗6 ∅ ∅ ∅ ∅ ∅ ∅ −199.99 −989.95 35479.27 −638534.33
w∗7 ∅ ∅ ∅ ∅ ∅ ∅ ∅ 225.70 −22102.39 631648.54
w∗8 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 5582.02 −340299.59
w∗9 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 76862.54

Tab. 1: Optimal parameters w∗j , j = 0 ∼ n in different learning models.

EXERCISE 4: The parameter w∗0 given
in Tab. 1 under different n shows sim-
ilar values. However the value for w∗j
with j ≥ 1 changes a lot as n increases.
Explain the possible reason.

Results for a series of learning model fw∗(x) with different parameter n are
shown in Fig. 6. Let’s discuss starting with the case “n = 0”, now the learning
model is fw(x) = w0 and in this case the optimized parameter w∗0 is just the
mean of the output y(i), namely w∗0 = (y(1) + y(2) + · · · + y(10))/10. Next, we have
re-obtained the linear fitting result if n = 1. There are several novel and impor-
tant features shown in Fig. 6. Firstly, at small n the learning curve (blue line)
predicts poorly for the data points, and the prediction becomes better and bet-
ter when n increases. In the limit situation of n = 9, the prediction can perform
perfectly on the data points (there is no difference between the measurement
y(i) and the prediction fw(x(i)) at these points). However, the learning curve be-
comes very strange at these larger n, while it is much smoother with smaller n.
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This indicates the model behavior under consideration.
The smoothness and the strangeness See, e.g., D. Wolpert and W. Macready,

No Free Lunch Theorems for Optimiza-
tion, IEEE Transactions on Evolution-
ary Computation 1, 67 (1997).

characterize two important aspects of
the learning model: When the learning curve is smoother we call it has a smaller
variance, while when the curve is closer to the measurements we call it has a
smaller bias. Thus, when n is small, the learning model has a small variance and
a large bias and the learning model has a large variance and a small bias when n
is large. This phenomenon is sometimes called the “no-free-lunch theorem”, An example on fine-tuning is the fol-

lowing quantity

u =
√

x + 1 −
√

x =
1

√
x + 1 +

√
x
,

where, e.g., x is a very large number.
The first method to calculate d is dan-
gerous if x is very large, i.e., rounding
error may emerge. However the sec-
ond method for calculating u is safe,
namely it would not produce rounding
error.

in
the sense that one could not obtain a learning model with both small variance
and small bias. It is a very general feature of all the learning problems in data
analysis. The “no-free-lunch theorem” is also called the bias-variance trade-off
or the bias-variance decomposition. The learning model with large n is very
complicated and has a very strong power of fitting data but limited power of
predicting new data. We thus often call n the complexity of the model. In our
example, n ≈ 3 ∼ 6, is reasonable. In Tab. 1, the values of the optimal w∗j are
shown in models with different n. One of the important features is that as the
model complexity n increases the magnitude of w∗j’s eventually increase. It is
very dangerous in the sense that in order to finally obtain a naturally prediction
on the output the large terms w∗j x

j are added, and this phenomenon is called
fine-tuning. One of the popular methods to avoid the fine-tuning is through
the regularization term introduced into the model. We will introduce it in the
following paragraphs.

The bias-variance decomposition is a general result in data fitting prob-
lems, independent of the learning model adopted, see Fig. 7 for four popular
patterns of bias and variance. If the physical model for the quantity x is as be-
fore denoted as fphys(x), and the output generated by x is y = fphys(x) + a, where
a is a noise with mean E[a] = 0 and variance var[a]. In addition, the learning
model is denoted by f̂ (x) without introducing the learning parameter w. For
each testing data x, the output given by the learning model is consequently
f̂ (x). After some straightforward derivations we could obtain the mean of the

low bias, low variance

low bias, high variance

high bias, low variance

high bias, high variance

Fig. 7: Patterns of bias and variance.

square of the difference between the physical model and the learning prediction
∆ = E[( fphys(x) + a − f̂ (x))2], which characterizes the goodness of the model,

∆ =E
[(

fphys(x) + a − f̂ (x)
)2

]
=E

[
f 2
phys(x) + a2 + f̂ 2(x) + 2a fphys(x) − 2a f̂ (x) − 2 fphys(x) f̂ (x)

]
=E

[
f 2
phys(x) + a2 + f̂ 2(x) − 2 fphys(x) f̂ (x)

]
=E

[
a2

]
+ E

[
f 2
phys(x)

]
+ E

[
f̂ 2(x)

]
− 2E

[
fphys(x) f̂ (x)

]
=E

[
a2

]
− E2[a] + E

[
f 2
phys(x)

]
+ E

[
f̂ 2(x)

]
− 2E

[
fphys(x) f̂ (x)

]
+ E2

[
f̂ (x)

]
− E2

[
f̂ (x)

]
= var[a] + f 2

phys(x) + E
[
f̂ 2(x)

]
− 2 fphys(x)E

[
f̂ (x)

]
+ E2

[
f̂ (x)

]
− E2[ f̂ (x)]

= var[a] + E2
[
f̂ (x)

]
− 2 fphys(x)E

[
f̂ (x)

]
+ f 2

phys(x) + E
[
f̂ 2(x)

]
− E2

[
f̂ (x)

]
= var[a] +

[
E

[
f̂ (x)

]
− fphys(x)

]2
+ E

[[
f̂ (x) − E

[
f̂ (x)

]]2
]
, (17)

the meaning of each term is clear:

(a) The noise var[a] could not be reduced once the physical model is fixed.

(b) E[ f̂ (x)] − fphys(x) is the bias between the learning model f̂ (characterized
by its mean E[ f̂ (x)]) and the physical model fphys.

(c) E[[ f̂ (x) − E[ f̂ (x)]]2] is the variance of the learning model f̂ on the testing
data.
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thus

E
[(

fphys(x) + a − f̂ (x)
)2

]
= var[a] +

[
bias of f̂ (x)

]2
+ variance of f̂ (x), (18)

or
(total error)2 = noise + bias2

+ variance. (19)
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low bias/high variancehigh bias/low variance

model complexity

testing error

training error reasonable model selection

Fig. 8: Sketch of the bias-variance decomposition.

It is the bias-variance decomposition of the learning process, which par-
tially explains that if the bias of the learning is small then the variance is cor-
respondingly large and vice versa, since the noise var[a] is generally a constant
once the physical model is fixed. See Fig. 8 for the sketch of the bias-variance
decomposition of the learning model. See, e.g., M. Belkin et al., Reconcil-

ing Modern Machine Learning Practice
and the Classical Bias-variance Trade-
off, PNAS, 116, 15849 (2019).

In fact, there is no prior that the total er-
ror should be decomposed into the variance and the bias. A natural question
is that could the bias and the variance be small simultaneously? Problems like
these are at the center of modern deep learning theory. For example, in some
model studies, the “double descent” for the prediction error is found, indicat-
ing that the testing error could be reduced even to be very small in the over-
parametrized region. H.W. Lin, M. Tegmark, and D. Rolnick,

Why Does Deep and Cheap Learning-
Work So Well?, J. Stat. Phys. 168,
1223 (2017), in this paper the idea of
effective field theories was applied; C.
Beny, Deep learning and the Renormal-
ization Group, arXiv:1301.3124 (2013),
in this work the renormalization group
technique was adopted.

Deep understanding on the current neural networks is
an important and exciting problem, we have no attempts to review the status
on this issue, e.g., some people use ideas from physics like the renormalization
group and the effective field theories to deal with the neural networks.

§4 Training Error and Testing Error

In order to characterize the bias-variance decomposition in a more quali-
tatively manner, we define two errors both based on Eq. (9). We already have
m = 10 data points (denoted as the training data), we define the training error
per data sample as

etrain ≡
1
m

1
2

m∑
i=1

[
fw∗(x(i)) − y(i)

]2
 , (20)

where the optimized w∗ is used. For n = 9, the etrain will be zero since the learn-
ing model can exactly pass through all the training data points. Besides these
already existed training data, one could randomly generate another m′ data
points (different from the training data) according to fphys(x(i′))+a(i′) where both
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x(i′) and a(i′) are random, and define the testing error per data sample as

etest ≡
1

m′

1
2

m′∑
i=1

[
fw∗(x(i′)) − y(i′)

]2
 . (21)

It is reasonable to expect that the testing error for the situation with n = 9 would
be larger than that in the case n = 3.

−1 0 1 2 3 4 5 6 7 8 9 10
model complexity n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
etrain
etest

DE

Fig. 9: Training error etrain, testing error
etest and the integration error DE.

Selecting a model with a certain n is called model selection. A very simple
scheme to select a reasonable n is to select the learning model with a smallest
training error, a smallest testing error, or a total error defined as the weighted
sum of the training and the testing error, i.e., etotal = hetrain + (1 − h)etest, where
0 ≤ h ≤ 1. Taking h = 1/2 means that the training error and the testing error
have the same weights, otherwise they have different weights. Another scheme
characterizing the learning model on the prediction power is to calculate the
average (overall) deviation between the physical model fphys(x) and the learning
model fw(x), for our example, we have the following integration error,

DE =
∫ 1

0

∣∣∣ fphys(x) − fw∗(x)
∣∣∣ dx. (22)

In Fig. 9 the EXERCISE 5: Define the generalized

integration error as DE(ν) =
∫
| fphys(x) −

fw∗ (x)|νdx, investigate its n-dependence
for the polynomial model for ν = 2 and
ν = 3.

above errors are shown as functions of n where m′ = 5 is adopted.
For the current problem we find that n ≈ 3 ∼ 6 is reasonable.

§5 Regularization (Penalty) Term(s)

EXERCISE 6: Change the noise a(i) to
be sampled from the uniform distribu-
tion Unif[−ℓ, ℓ] with ℓ a large number
(e.g., 10) in the polynomial learning
model, investigate the learning prop-
erties. In this case the noise a(i) itself
exceeds the physical model sin(2πx(i))
and consequently the measurements
y(i) are almost characterized by the
noise. It tells us that noise has no regu-
lar behavior, and thus can not be stud-
ied via learning algorithms.

As discussed above and shown in Fig. 9 if the model complexity n is selected
reasonably, e.g., n = 3 or n = 4, the learning curve has both low training and
testing errors. On the other hand, if n is very small, e.g., n = 0, the learning
model fw∗(x) = w∗0 has both large training and testing errors. If n is too large like
n = 9 the learning model has zero training error. However the testing error is
now extremely large, indicating that the model has very poor prediction power
although it could pass through the training data perfectly. In addition, in the
small n case (e.g., n = 0 or n = 1), the learning model is very poor in grasping
the training data, and we call this situation is under-fitting. On the other hand,
in the large n case (e.g., n = 9), the learning model is very strong in grasping
the training data (but very poor in predicting new samples), and we say this
situation is over-fitting. Either under-fitting or over-fitting is bad. The overall
performance of model is characterized by the prediction error.

We introduce EXERCISE 7: The ℓ-1 norm is defined
as |w|1 =

∑n
j=0 |w j|. Explore the geomet-

rical meaning of the ℓ-1 norm on the
learning problem.

EXERCISE 8: Write down the equa-
tion for w∗ if the regularization term is
taken as λ(w2)2, where (w2)2 = (w2

0 +

w2
1 + · · · + w2

n)2. What’s about w4 = w4
0 +

w4
1 + · · · + w4

n? Moreover, what’s about if
the regularization term is λw⊤Tw with
T a positive-definite matrix? Investi-
gate the relevant learning properties.

the regularization method to deal with the over-fitting prob-
lem. Besides the original loss 2−1 ∑m

i=1[ fw(x(i))−y(i)]2, we introduce an extra term:

J(w) =
1
2

m∑
i=1

[
fw(x(i)) − y(i)

]2
+ λg(w), (23)

where λ > 0 is a parameter put by hand and g(w) is a function of w, which is
positive. We call λg(w) the regularization term to the loss function J(w). There
are many different forms of the regularization term and different form has dif-
ferent realistic meaning. Here we adopt the following regularization term,

λg(w) =
1
2
λw⊤w =

1
2
λ
(
w2

0 + w
2
1 + · · · + w2

n

)
, (24)
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which is called the ℓ-2 regularization term. Another important penalty term is
the ℓ-1 form, which is used to guarantee the sparsity of the learning model.

The equation determining the parameter w0, w1, · · · , wn in the presence of
the regularization terms could be derived similarly as

⟨1⟩ ⟨x⟩ · · · ⟨xn⟩
⟨x⟩ ⟨x2⟩ · · · ⟨xn+1⟩
...

...
. . .

...

⟨xn⟩ ⟨xn+1⟩ · · · ⟨x2n⟩



w0
w1
...

wn

 =

⟨y⟩
⟨xy⟩
...

⟨xny⟩

 − λ

w0
w1
...

wn

 , (25)

or(F + λ1) w = G, where 1 is the (n + 1) × (n + 1) unit matrix.
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x
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n=9

Fig. 10: Regularization term effect.

In Fig. 10 the effects of the regularization term with λ = 10−12 are shown
based on the 9th-order polynomial learning model. It is found that a tiny
λ = 10−12 essentially makes the overall behavior of the learning curve more
regular and smoother, and one can expect as λ increases the curve becomes
much smoother. It should be pointed out once again that the regularization
term λg(w) is not encapsulated in the data points themselves, instead it is put
by hand. In this sense the λ-term more or less characterizes people’s belief
in the data, i.e., if λ is small the original data points are treated more impor-
tantly, and on the other hand, if λ is large it means that one does not believe
the original data points. A natural question is what will happen in this large λ
limit. For example, by taking λ = 1 the w∗j’s in the n = 9 model are found to be
0.44,−0.28,−0.31,−0.20,−0.10,−0.02, 0.03, 0.06, 0.08 and 0.09, respectively. The
case λ = ∞ corresponds to the situation that one totally disbelieve the original
data points, since now

λg(w) ≫ 1
2

m∑
i=1

[
fw(x(i)) − y(i)

]2
, (26)

and the learning model is approximately reduced to be fw(x) = λg(w) and if
g(w) = w⊤w then the optimal w∗ is essentially 0 without doubt. In Fig. 11 the
training loss as well as the testing for the model with n = 9 are plotted as func-
tions of ln λ, where the testing sample number is m′ = 104. As ln λ → −∞, i.e.,
the limit without using the regularization term, the training loss tends to zero
since when n = 9 the learning model could perfectly pass through all the data.
In the meanwhile the testing loss is fixed at a nonzero constant. Under the op-
posite limit named ln λ → ∞, the learning model naturally becomes zero, and
consequently either the training loss or the testing loss is fixed at constants
which are determined by the simulated data points used.

−20 −10 0 10 20
logλ

0.0

0.1

0.2

0.3

0.4
etrain
etest

Fig. 11: Training and testing errors as
functions of parameter λ, here n = 9.

§6 *Normal Equation and More Theoretical Discussions

Let’s discuss the polynomial learning model in some more details. One has a⊤b = b⊤a since this quantity
is a scalar, i.e.,

∑d
i=1 aibi with d the di-

mension of the vector a or b.

In our
polynomial learning model, fw(x) = w0 + w1x + w2x2 + · · · + wnxn, which could be
rewritten in the form

fw(x) = w⊤ϕ⃗(x) = ϕ⃗⊤(x)w (27)

with
w = (w0, w1, w2, · · · , wn)⊤ , ϕ⃗(x) =

(
1, x, x2, · · · , xn

)⊤
, (28)

i.e., w ∈ R(n+1)×1 ≡ Rn+1 is a column vector (column vector is thin and tall) and
its transpose w⊤ ∈ R1×(n+1) is a row vector (row vector is fat and short). The jth
component of the vector ϕ⃗ is x j with j = 0 ∼ n. Denoting ϕ j(x) = x j, then the
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function ϕ⃗(x) could be written

ϕ⃗(x) = (ϕ0(x), ϕ1(x), · · · , ϕn(x))⊤ , ϕ j(x) = x j, j = 0 ∼ n. (29)

In the polynomial learning model, each component ϕ j(x) takes the form x j.
Specifically, the derivation is given by,

m∑
i=1

[
fw(x(i)) − y(i)

]2

=
[
fw(x(1)) − y(1)

]2
+ · · · +

[
fw(x(m)) − y(m)

]2

=



w0ϕ0(x(1)) + · · · + wnϕn(x(1))︸                                ︷︷                                ︸
fw(x(1))

−y(1)

.

.

.

w0ϕ0(x(m)) + · · · + wnϕn(x(m))︸                                 ︷︷                                 ︸
fw(x(m))

−y(m)



⊤

×


w0ϕ0(x(1)) + · · · + wnϕn(x(1)) − y(1)

.

.

.

w0ϕ0(x(m)) + · · · + wnϕn(x(m)) − y(m)

 .

However, in more general situations, the component ϕ j(x) is free to take other
forms, e.g., ϕ j(x) = sin( jtx) with t a constant. We call the functions ϕ j(x)’s the
basis functions.

Adopting the basis function representation, the loss function without regu-
larization term is given by

J(w) =
1
2

m∑
i=1

[
fw(x(i)) − y(i)

]2
, fw(x(i)) = w⊤ϕ⃗(x(i)). (30)

The loss function could be written as in another form,

J(w) =
1
2

(
Φ⃗w − y

)⊤ (
Φ⃗w − y

)
, (31)

where

Φ⃗ =


ϕ0(x(1)) ϕ1(x(1)) · · · ϕn(x(1))
ϕ0(x(2)) ϕ1(x(2)) · · · ϕn(x(2))
...

...
. . .

...

ϕ0(x(m)) ϕ1(x(m)) · · · ϕn(x(m))

 =

1 ϕ1(x(1)) · · · ϕn(x(1))
1 ϕ1(x(2)) · · · ϕn(x(2))
...

...
. . .

...

1 ϕ1(x(m)) · · · ϕn(x(m))

 ∈ Rm×(n+1),

(32)

and
y =

(
y(1), y(2), · · · , y(m)

)⊤ ∈ Rm. (33)

We call the matrix Φ⃗ the design matrix with its component given by ϕ j(x(i)). EXERCISE 9: Prove the following iden-
tities which are useful when deriving
the normal equation

∂a⊤b
∂a
= b,

∂a⊤Ma
∂a

= a⊤
(
M +M⊤) ,

where a,b ∈ Rd×1 ≡ Rd,M ∈ Rd×d.

The

derivative of the loss J(w) with respect to w is given by ∂J(w)/∂w = Φ⃗⊤Φ⃗w− Φ⃗⊤y,
then taking ∂J(w)/∂w to be zero, namely Φ⃗⊤Φ⃗w = Φ⃗⊤y, one obtains the solution
of this normal equation,

w∗ =
(
Φ⃗⊤Φ⃗

)−1
Φ⃗⊤y. (34)

After the regularization term 2−1λw⊤w is included into the loss function J(w),
the optimized solution is changed to be

w∗ =
(
Φ⃗⊤Φ⃗ + λ1

)−1
Φ⃗⊤y. (35)

It should be point out that the regularization term introduced into the least-
squares plays an important role in situations where the matrix Φ⃗⊤Φ⃗ is singular,
i.e., det(Φ⃗⊤Φ⃗) = 0. Choosing a large λ indicates that the original data informa-
tion is put at the secondary position. Let’s give more analysis on the normal
equation. Assume that we want to find the minimum of the quadratic objec-
tive function K(w) = 2−1w⊤Φ⃗w − y⊤w, the gradient of K(w) is given by Φ⃗w − y.
In order to find the optimal w∗ one naturally needs to solve this equation, i.e.,
Φ⃗w = y. However due to some reasons, e.g., there exist more equations than un-
knowns (the number of rows of Φ⃗ is larger than that of columns), this equation
may have no solutions, i.e., the system is over-determined. It is often the origin
of the situation det(Φ⃗⊤Φ⃗) = 0 aforementioned. Hence we can not expect to a
solution of Φ⃗w = y and may instead try to change the problem to solving the
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least-squares problem, minw(Φ⃗w − y)⊤(Φ⃗w − y). This objective function is just
the J(w), and the solution is given by that of the normal equation.

Since ϕ0 = 1, without losing generality the design matrix is
ϕ1(x(1)) ϕ2(x(1)) · · · ϕn(x(1))
ϕ1(x(2)) ϕ2(x(2)) · · · ϕn(x(2))
...

...
. . .

...

ϕ1(x(m)) ϕ2(x(m)) · · · ϕn(x(m))

 , (36)

where each column forms a vector φ⃗ j = (ϕ j(x(1)), · · · , ϕ j(x(m)))⊤ ∈ Rm with j = 1 ∼
n (the difference between n and n + 1 is essentially irrelevant for the following
discussion). On the other hand, each row ϕ⃗(x(i)) has dimension n. Under the
assumption that the model complexity n is smaller than the data number m,
the n-vector ϕ⃗(x(i)) may span a sub-space S with dimension m. Denote t as an
m-vector with its ith component given by fw(x(i)), i.e., t = ( fw(x(1)), · · · , fw(x(m)))⊤.
Since the vector t is some linear combination of the basis φ⃗ j, it could be at any
point in the n-dimensional space. Under these considerations, the loss func-
tion J(w) ∼ ∑m

i=1[y(i) − fw(x(i))]2 = (y(1) − t1)2 + · · · + (y(m) − tm)2 is the Euclidean
distance between y and t. The least-squares searching for w is consequently to
find a vector t in the sub-space S in order to make the distance between t and y
be smallest, i.e., to project the vector y into the sub-space S .

We investigate the meaning of the bias parameter w0. For the situations the data samples
x(i)’s have different weights, e.g., some
of which are considered to be much
important that others, we could design
the weighted loss function,

J
Θ⃗

(w) =
1
2

m∑
i=1

θ(i)
[
fw(x(i)) − y(i)

]2
+
λ

2
w⊤w,

a subscript Θ⃗ is added here with Θ⃗ =
diag(θ(1), · · · , θ(m)), θ(i) > 0, and

∑m
i=1 θ

(i) =

1. The corresponding normal equation
modifies to be(

Φ⃗⊤Θ⃗Φ⃗ + λ1
)

w = Φ⃗Θ⃗y.

By computing the
derivative of J(w) with respect to w0 with the former given by

J(w) =
1
2

m∑
i=1

y(i) − w0 −
n∑

j=1

w jϕ j(x(i))


2

, (37)

one obtains the optimal value for w∗0 as

w∗0 = ⟨y⟩ −
n∑

j=1

w j⟨ϕ j⟩, ⟨y⟩ =
1
m

m∑
i=1

y(i), ⟨ϕ j⟩ =
1
m

m∑
i=1

ϕ j(x(i)). (38)

It shows the bias parameter w0 compensates the difference between the output
and the weighed-average of the average of basis function on the data samples.

§7 Stochastic Gradient Descent (Conceptual)

It is useful to notice that the dimension of the matrix Φ⃗⊤Φ⃗ is n + 1, which
may possibly be far smaller than the data number m, making the solving of the
normal equation possible. It of course should depend on the algorithms like
the gradient descent to search the optimal parameter if the model complexity n
is a very large number which hinders the direct inverse of the matrix Φ⃗⊤Φ⃗. The second-order derivative of the loss

function with respective to w is given
as

∂2 J
∂w2 =

∂

∂w
(
Φ⃗⊤Φ⃗w

)
= Φ⃗⊤Φ⃗,

which is often positive-definite. If not,
by adding the term λ1, one could make
it to be positive-definite.

In
this case, one just uses the information of the gradient of J(w), namely, w ←
w − ϵ(Φ⃗⊤Φ⃗w − Φ⃗⊤y), to update the learning parameter w. Here ϵ is the learning
rate or the step size of the gradient descent search. Since the learning problems
in this lecture are based on the polynomial model,there exists the closed form
for the optimal parameter, i.e., the one given by the normal equation.

In more general situations in which the basis function takes other forms,
there exists no closed form for the learning parameter. In these situations one
should necessary use the optimization algorithms to do the search. The search

— 11 —



is composed of the following steps: 1. Initialize the learning parameter w. 2.
Randomly select a data sample (x(i), y(i)). 3. Update the learning parameter
according to w ← w − ϵi∇J(i)(w), where the ∇J(i)(w) is the gradient associated
with the selected data sample, i.e., ∇J(i)(w) = −ϕ⃗(x(i))(y(i) − fw(x(i))) where the n-
vector ϕ⃗ is constructed from the row of the design matrix. 4. Recursively do the
search to fulfill the termination condition. Here one selects the data sample
in a stochastic manner in order to reduce the calculation task in the gradient
of the loss function at each step. EXERCISE 10: Use gradient descent to

solve the nonlinear curve fitting prob-
lem.

We call this gradient descent the stochastic
gradient descent (SGD), which plays a central role in modern large-scale opti-
mization problems.

Problems For This lecture

Theoretical
(1) Prove the relation ∂a⊤X⊤b/∂X = ba⊤, and

∂ det Y
∂x

= det Ytr
[
Y−1 ∂Y
∂x

]
,
∂ det Y
∂Y

= det YY−⊤,
∂ ln det Y
∂Y

= Y−⊤, (39)

where capital letters are for matrices.

(2) The sigmoid function is often denoted as σ(x) = 1/(1 + e−x). Prove that
tanh(x) = 2σ(2x) − 1. For two learning models,

fw(x) =w0 +

n∑
j=1

w jσ
( x − ν j

s

)
, fu(x) = u0 +

n∑
j=1

u j tanh
( x − ν j

2s

)
, (40)

find the relationship between two sets of parameter {w j} and {u j}.
(3) In the linear learning model, define the distance of the point (x(i), y(i)) to the

fitting line y = ax + b as,

d(i)
⊥ (a, b) =

∣∣∣ax(i) + b − y(i)
∣∣∣ / √a2 + 1 , d(i)

x (a, b) =
∣∣∣ax(i) + b − y(i)

∣∣∣/ a. (41)

Consequently, the loss function is obtained as J⊥(a, b) = 2−1 ∑m
i=1 d(i),2

⊥ (a, b)
or Jx(a, b) = 2−1 ∑m

i=1 d(i),2
x (a, b). Derive the equations for determining the

parameters a and b. See Fig. 12 for the geometrical meaning of d⊥ or dx,
and if a is large d⊥ ≈ dx.

d
x

d
⊥

x

y

ax
+
b

Fig. 12: Distances d⊥ and dx.

Programming
(4) Adopt the gradient descent algorithm to find the optimal values for the

learning parameters of the loss function (41), and compare the results with
Fig. 2. Are the predictions for a and b biased or not?

(5) Consider the following learning model,

J(w) =
1
2

m∑
i=1

 m∑
j=1

w jG(x(i), x( j)) − y(i)

2

+
λ

2
w⊤w, G(x, x( j)) = e−(x−x( j))2/2ν2 , (42)

where there is no w0-term here and G is the Gauss kernel. Investigate via
SGD the data produced by y(i) = sin(2πx(i)) + a(i) based on (42) with large
training number m, e.g., m = 106. The width parameter ν = 0.4 and the
learning rate ϵ = 0.01 are fixed.
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