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In this lecture, we introduce the fundamental concepts of perturbative calcu-
lations. The basic method for doing perturbative calculations is the Taylor’s ex-
pansion of a function, based on which one can obtain the perturbative form of the
relevant quantity as f / f0 = 1+·· · where f0 is the leading/main order contribution.
Elementary examples on using perturbative calculations are given in the work.
Moreover, a few important structures/properties encapsulated in the perturbative
calculations will be discussed in details, such as the duality, harmonic oscillation
and spontaneous symmetry breaking. The concept of effective theories is closely
related with the perturbative calculations, and which is also discussed via consid-
ering the nonlinear effects introduced into the harmonic system.

I. INTRODUCTORY COMMENTS

Determination/calculation of a physical quantity is a fundamental is-
sue in physics, which is also important for other subjects. However,
it is often very difficult to obtain the quantity analytically, and in this
sense the perturbative methods are frequently adopted. Generally, one
assumes that the perturbative form of a quantity f as f = f0+ f1+ f2+·· · ,
where the f0 is called the leading term, which contributes most to f . On
the other hand, f1+ f2+·· · is as a whole called the correction and is often
a small quantity in the sense that,∣∣∣∣ f j

f0

∣∣∣∣¿ 1,
∑

j | f j |
| f0|

¿ 1,

∣∣∣∣∣ f j+1

f j

∣∣∣∣∣< 1, lim
j→∞

f j+1

f j
= 0, (1.1)

where j = 1,2, · · · . Moreover, we could write the f in the perturbative
form as,

f = f0(1+F1 +F2 +·· · ), F j = f j / f0. (1.2)

The basic aim of any forms of the perturbative calculation is to obtain
the expressions of F1,F2, · · · and consequently estimate their effects to
the leading term f0 (or “1” compared with F1,F2, · · · ).
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Fig. 1: Convergence of the perturbative
calculations, where pattern b) is reason-
able while patterns a) and c) are not.

The quantity f is assumed to
be a function of a few parame-
ters involved namely f = f {ϕi} =
f (ϕ1, · · · ,ϕn), among which some
parameters ϕα are reasonable
to be used to construct the per-
turbative schemes, e.g., f {ϕi} =
f0,α(1 + g1,αϕα + g2,αϕ

2
α + ·· · ),

with g1,α, g2,α, · · · , the expan-
sion coefficients. One could ef-
fectively define the convergence
factor as Φ j,α = g j+1,α/g j,α,
which fundamentally fulfills that
lim j→∞Φ j,α = 0. In many prob-
lems, the factor Φ j,α approaches
to zero very quickly as shown in
Fig. 1. In this figure, the pattern b) is reasonable while patterns a) and
c) are not appropriate for doing perturbative calculations. In situations
with multiple parameters involving the perturbative calculation, we of-
ten take perturbative calculations on one of them while fixing the oth-
ers, and after that the number of the perturbative parameters is reduced
by one and consequently we could do relevant calculations on the corre-
sponding coefficients.

In some problems, the main (leading) contribution “1” in (1.2) does not
exist, i.e., the perturbation starts with the small quantity. in addition,
the even more general form of the perturbative calculation takes the one
f {ϕi} = f0,α[1+∑

j=1 g j,αϕ
ρ j
α ], where the constant “1” here could also be

zero (all the other non-zero constants could always be transformed into
“1”). There may exist singular terms in the final expressions of the per-
turbative calculations, e.g., the terms like (ϕα)ϵ logϕα, and these terms

are often originated from the singular properties encapsulated in the
problems themselves. Furthermore, the indexes ρ j ’s are determined by
the structure and/or symmetry of the problem involved. For example, in
the nonlinear effects of the simple pendulum to be explored in the fol-
lowing part the indexes ρ j ’s take even values from 2 due to the left-right
symmetry of the system. It could be generally stated that the pertur-
bative structure of the calculation reflects the complexity of the series
expansion from the viewpoint of mathematics.

If the exact form of a quantity W is wrote as

W =ω×10δ, (1.3)

the aim of order of magnitude estimation and perturbative calculations
is to roughly give the value of the index δ while that of the index ω needs
the whole/complete theories. Estimating the δ is already very important
(more generally the determination of the sign of W has very useful con-
sequences in some problems).

The lecture is organized as follows: In section II we give an elemen-
tary example namely using perturbative calculations to determine the
root of a simple algebraic equation with order beyond four. Some basic
structures like the duality of the perturbative calculations are introduced
within this example. Section III is devoted to the period of the simple
pendulum system, where the nonlinear effects due to the finite swing an-
gle χmax are calculated, then in section IV we generally discuss how to
explore the nonlinear effects on the period of the system. In section V, we
introduce the concept of spontaneous symmetry breaking which is essen-
tially related with the perturbative calculations for some certain quan-
tities. Section VI introduces another important form of the perturbative
calculations namely the integration form, for problems one can not solve
the quantity directly and instead one needs to compare both sides of the
equation determining the quantity involved. In the appendix, we discuss
the role played by the polynomial in the perturbative calculations. Along
the development of the lecture, more words are given using examples in-
stead of formal theories. Different types of exercise are provided in the
context for further familiarizing the methods developed.

II. EXAMPLE: SOLUTION OF AN ALGEBRAIC EQUATION

The main feature of the estimation on the order of magnitude and
approximated perturbative calculations could be clearly demonstrated in
some very elementary mathematical problems. For instance, it could be
shown when trying to solve the following simple algebraic equation,

xn(t)=Ω+ tx(t)/Λ, x(t) ∈R+, n ∈N+, n ≥ 5, t ≥ 0, (2.1)

where t and Λ are two parameters (e.g., t is the time) with Λ a positive
constant. As we all know there is no closed formula for the simple alge-
braic equation if the order of the equation is larger than or equal to four.
In this sense we need use either numerical algorithms or approximated
methods to investigate the root of the equation like (2.1).

If the “time” t is small near zero, the second term on the left hand side
of Eq. (2.1) could be treated as a perturbation and in this case we could
assume x(t) ≈ x0[1+δ(t)] = Ω1/n[1+δ(t)] with δ(t) a small correction to
the leading order solution “1”. Expanding both sides of Eq. (2.1) to order
δ(t), one obtains δ(t)= tΩ1/n−1/nΛ and then,

x(t)≈Ω1/n
(
1+ 1

nΛ
Ω1/n−1t

)
. (2.2)

The above (approximated) theory will be broken if t ≲ nΛΩ1−1/n. The
approximated theory here is often called the linear perturbation and the
basic requirement is that the t should not be larger than nΛΩ1−1/n, e.g.,
t ≲ tmax ≈ snΛΩ1−1/n, s ¿ 1. Moreover, if one considers the next contri-
bution to the solution, i.e., x(t)=Ω1/n(1+αt+βtσ), where α=Ω1/n−1/nΛ,
then after some straightforward calculations, one obtains that σ= 2 and
consequently,

x(t)≈Ω1/n
(
1+ 1

nΛ
Ω1/n−1t− n−3

2n2Λ2 Ω
2/n−2t2

)
. (2.3)
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One has that t ¿ nΛΩ1−1/n from the first-order theory. If higher or-
der corrections are taken into consideration, e.g., the second-order con-
tribution appeared in (2.3), the condition for the perturbation theory is
obtained as |(n−3)δ2(t)/2| ¿ |δ(t)|, or equivalently |(n−3)δ(t)/2| ¿ 1, or
t ¿ 2nΛΩ1−1/n/(n−3). It becomes t ¿ 2ΛΩ1−1/n ∼ 2ΛΩ if n is large,
which is weaker than the criterion t ¿ nΛΩ1−1/n. indicating the effec-
tive perturbative region shrinks as the order of the expansion increases.

The perturbation element (or the small quantity in general) of the
Eq. (2.1) is δ(t)=αt =Ω1/n−1t/nΛ, and consequently x(t)≈Ω1/n[1+δ(t)−
(n−3)δ2(t)/2]. It is obvious that it could not be treated as small when
the t is large, indicating that either the linear theory or the theory
with higher order terms breaks down at large t. However, on the other
hand, in the limit that the t approaches to infinity, another perturba-
tive scheme for Eq. (2.1) emerges. In that situation, the term Ω on the
right hand side of the equation (2.1) could be safely neglected, leading
to x∞(t) = (t/Λ)1/(n−1), and it is called the asymptotic solution (large-t)
of Eq. (2.1). Assuming that x(t) ≈ x∞(t)[1+ϕ(t)] based on the asymptotic
solution and the factor |ϕ(t)|¿ 1, one could obtain,

x(t)≈
(

t
Λ

) 1
n−1

[
1+ Ω

n−1

(
Λ

t

) n
n−1

]
, ϕ(t)= Ω

n−1

(
Λ

t

) n
n−1

, (2.4)

with the condition that

t À tasp ≡Λexp
(
−n−1

n
log

n−1
Ω

)
. (2.5)

Moreover, considering that x(t)≈ x∞(t)[1+ϕ(t)+µ(t)] to even higher order
with µ(t) the contribution smaller than ϕ(t), we have

x(t)≈
(

t
Λ

) 1
n−1

[
1+ Ω

n−1

(
Λ

t

) n
n−1 − nΩ2

2(n−1)2

(
Λ

t

) 2n
n−1

]
, (2.6)

and thus x(t)≈ x∞(t)[1+ϕ(t)−nϕ2(t)/2], i.e., µ(t)=−nϕ2(t)/2.

EXERCISE 1: Derive the analytic expressions for the x(t) of Eq. (2.1)
to order δ3(t) and ϕ3(t). Discuss their applicable conditions.

EXERCISE 2: Consider the equation by generalizing Eq. (2.1) to be
xn(t)=Ω+ txm(t)/Λ with m < n, develop its approximated solutions.
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Fig. 2: Solution of Eq. (2.1), n = 6,Λ=Ω= 1.

The exact solution of the
algebraic equation (2.1) could
be numerically constructed
via, e.g., the algorithm,

x( j+1)(t)=
(
Ω+ tx( j)(t)

Λ

)1/n

,

(2.7)
starting from an initial value
x(0) for iteration. In Fig. 2 we
show an example of the solu-
tion of Eq. (2.1) where n = 6
and Λ = Ω = 1 are adopted,
and consequently one obtains
tasp ≈ 0.26. It is shown obvi-
ously from the figure that af-
ter combining the asymptotic
solution with the approximation developed with small t, one could con-
struct the total solution of Eq. (2.1) eventually (for example, the region
bounded by the small-t approximation to second order (shown with the
blue line) and the asymptotic solution to second order (shown with the
cyan line)), and moreover one could always do this better by consider-
ing higher and higher orders both in the small-t and in the asymptotic
regions. In addition, the convergence structure of the solution (either
small-t or the asymptotic situation) is commutative in the sense that the
deviation from the exact one is commutative. For the problem (2.1) if
n = 3, the second-order term in the small-t expansion is zero, indicat-
ing that even higher order terms may play similar role on the solution
and one consequently need to investigate these terms carefully. Further-

more, the asymptotic solution is inversely correlated with the t and in
this sense we have developed effective perturbative calculations on the
small quantity 1/t when t itself is large. The perturbative relation on
the t and/or on the 1/t is called the duality of the problem. Finally the
medium region, for instance the region bounded by the magenta (blue)
and the red (cyan) lines, is often non-perturbative and the solution of the
problem in this region generally depends on some numerical recipe such
as (2.7), although the the area of the medium region eventually decreases
as the order of perturbation increases. For example, the applicable region
for the first-order theories by setting x1st

small−t(t) ≈ x1st
large−t(t) is found to

be about 0 ≲ t ≲ 1.23, while that for the second-order theories is about
0≲ t≲ 1.36, see the green circles in Fig. 2. Although the curves are closer
to the exact one, the improvement on the applicable region is not large.

EXERCISE 3: Compute the area of Fig. 2 formed by the exact curve,
the large-t and the small-t curves to first order and second order.

III. EXAMPLE: PERIOD OF A SIMPLE PENDULUM

As we all know that the period of a simple pendulum with a small
swing angle (e.g., ≲ 5◦) is approximately given by T = 2π(l/g)1/2, where l
is length of the pendulum, g is the gravity acceleration constant. When
writing down this formula one assumes that the pendulum is ideal in the
sense that there is no damping and external driven forces and also the
maximum swing angle is small, i.e., χmax ≲ 5◦. For the simple pendulum,
the physical quantities involved are the length (l), the mass of the ball
(m), the gravity acceleration constant (g) and the maximum swing angle
(χmax). Here the maximum swing angle χmax is dimensionless and it
should appear only in the “number” terms without any physical dimen-
sions. Moreover, as the swing angle becomes larger and larger, the period
of the system increases. For instance, the period is expected to be infinity
in the case that the swing angle is π. Based on these analyses, the maxi-
mum angle χmax is expected to appear in the period of the pendulum in
the following form,

T = 2π(l/g)1/2 ×
(
1+aχ2

max +·· ·
)
, (3.1)

and moreover the coefficient a is positive.

EXERCISE 4: Derive the zeroth-order term of (3.1), i.e., 2π(l/g)1/2,
via solving the equation of motion of the system with small angle.

EXERCISE 5: If a quantity f has the dimension as [M]µ[L]ν[T]σ with
M, L and T the basic mass, length and time units, could µ,ν and σ be any
real numbers? Explain it or give counterexamples.

We often denote the simple pendulum with the maximum swing an-
gle χmax ≳ 5◦ the non-harmonic system and the one with χmax ≲ 5◦ the
harmonic system. The harmonic property of the system depends in fact
on the force (or equivalently the potential), e.g., for the simple pendulum
this force is given by the tangent component of the gravity f =−mgsinχ.
In the situation that χ≲ χmax ≲ 5◦, one naturally has sinχ≈ χ, f ≈−mgχ,
indicating that the corresponding potential is proportional to χ2, i.e., it
is harmonic. When writing down the formula (3.1), we actually use the
fact — the pendulum has the left-right symmetry, and although this sym-
metry is very elementary it stills gives important information, namely
there would be no terms proportional to the odd orders of χmax.

In order to obtain the period of a harmonic system, one naturally needs
firstly to discuss the stability and the equilibrium and non-equilibrium
issues. In the stable equilibrium problem, the particle could come back to
the minimum if it is slightly far from the ground state, i.e., the periodic
motion is formed. The basic method for calculating the period is Taylor’s
expansion theory, which is also the most important cornerstone of all
the perturbative calculations. The motion with slight deviation from the
equilibrium state indicates that the quantity δx = x−X is small such that
the potential U could be expanded around X according to (4.1). Selecting
the equilibrium position at X = 0 (since the zero point of the potential
has no effects on the dynamical processes), and moreover adopting that
U(X )= 0, one obtains U(x)= 2−1U ′′(0)x2,δx → x, which is fundamentally
a parabolic equation (originating from the second-order approximation
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of the potential). On the other hand, the conservation of the mechanical
energy leads to 2−1mv2 = E−2−1U ′′(0)x2 from which one obtains

T = 2π
√

m
/
U ′′(0) . (3.2)

For instance, for the harmonic oscillator the potential is given by U =
kx2/2,U ′′(0) = k, then consequently the period is T = 2π(m/k)1/2, where
m is the mass of the oscillator. It is necessary to point that the formula
(3.2) is exact for the harmonic system.
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Fig. 3: Reduced period of the pendulum as a func-
tion of the maximum angle χmax.

For the general motion
of the simple pendulum
with any χmax, the period
is given by,1

T ≈T0
∞∑
j=0

∆ jχ
2 j
max, (3.3)

where the zeroth order
period is T0 = T(χmax =
0) = 2π

√
l/g, and ∆0 = 1,

∆1 = 1/16, ∆2 = 11/3072
and ∆3 = 173/737280 are
for the first three correc-
tions. In Fig. 3, we show
the reduced period of the
system T(l/g)−1/2/2π as a
function of χmax at differ-
ent orders of χmax. If χmax = π the integration

∫ 1
0 dϑ[1−sin2(ϑ)]−1/2

appearing in the calculation is divergent, indicating the perturbative
scheme is now broken down. From the physical viewpoint, the case
χmax =π corresponds to the unstable equilibrium state of the system and
consequently it has no period (or the period is infinity). Furthermore, the
coefficients ∆1,∆2,∆3, etc., guarantee that each term in the expansion of
the period is a perturbation compared with its previous term although
χmax could essentially be larger than 1.

EXERCISE 6: Assume the equation for χ is χ̈+ϕχ−ϕχ3/6= 0, where
ϕ> 0 is a constant. If χ is a small quantity χ¿ 1, the last term on the left
hand side could be treated as a perturbation and in this situation ana-
lytically solve the above equation for χ(t) under initial conditions χ(0)= 0
and χ̇(0)= C. Then solve it when the last term is included numerically.

EXERCISE 7: One of the root of the simple equation ax2 + bx+ c = 0
with abc, 0 and b > 0 is given by

x∗ = −b+
√

b2 −4ac
2a

= b
2a

(√
1− 4ac

b2 −1

)
. (3.4)

Assume that a is small in the sense k = 4ac/b2 ¿ 1, try to obtain the
approximation for x∗ from (3.4) by expanding the square root to order k2

using the formula
p

1+w ≈ 1+w/2−w2/8 for small w. The same result
could also be obtained via firstly solving the linear equation bx+c = 0 and
then adding some perturbation p to the solution −c/b as x =−(c/b)(1+p).
Determine the expression for p to first order.

Finally we discuss the period of a harmonic system. In fact, the period
of a harmonic system could be obtained by analyzing the structure of

1Some details of the derivation of (3.3): The equation of motion of the pendu-
lum is 2−1mv2(t)+U(x, t)= E,v(t)= dx/dt. Solving it gives dx/dt, and consequently
the time expressed in terms of the integration, i.e.,

dx
dt

=
√

2[E−U(x)]
m

, t =
√

m
2

∫
dxp

E−U(x)
.

The period of the system is consequently given as

T =4
√

m
2

∫ χmax

0

dxp
E−U(x)

= 4

√
l
g

∫ π/2

0
dϑ

(
1−sin2 χmax

2
sin2ϑ

)−1/2
.

For the zeroth-order approximation, χmax ≈ 0 (small angle), then one obtains the
familiar result T = 4

√
l/g

∫ π/2
0 dϑ= 2π

√
l/g. Similar results could be obtained in

the first-order theory and so on.

its total energy. Specifically, If the total energy of a system could be
written as E(β, β̇)= f β̇2 + gβ2 +C, where β is the generalized coordinate.
Harmonic oscillation (motion) requires that E−C = f β̇2 + gβ2 > 0.2 The
frequency, period, and the amplitude of β of the system are

ω=
(

g
f

)1/2
, T = 2π

(
f
g

)1/2
, βmax =

(
E−C

g

)1/2
, (3.5)

respectively, here the energy E is a conservative quantity of the system
considered. Usually one needs to analyze the force the system under-
went and then establish the equation of motion, and finally by solving
the equation of motion to obtain the period of the system, see EXER-
CISE 4. The above approach provides a convenient tool to obtain the pe-
riod of the system. Often calculating energy is some easier than solving
the equation of motion. However it is also essential to point that there
is no terms proportional to ββ̇ (i.e., the cross terms) in the expression of
the system energy, i.e., the energy contains only the quadratic terms in
the generalized coordinate, the generalized velocity and some constants.
These coordinates are called the normal coordinates.

EXERCISE 8: Apply formula (3.5) to the small-angle pendulum sys-
tem, and derive the expression for the period of the double-pendulum
system with equal mass/length moving in a plane.

IV. NONLINEAR EFFECTS: NOVELTY AND COMPLEXITY

Fig. 4: Potential U(x) near the minimum X
where U ′(X )= 0 and ω=U ′′(X )> 0.

In this section, let us
show how to do general cal-
culations for the harmonic
system including the non-
linear effects. Consider the
particle (as the ball in sim-
ple pendulum) moves un-
der the potential shown in
Fig. 4 where X is the mini-
mum of the potential. For
motion around the mini-
mum X , the potential act-
ing on the particle could be
approximated by expanding
the potential U(x) as,

U(x)≈U(X )+U̇ |x=Xδx+2−1Ü |x=Xδx2, (4.1)

where δxn = (x− X )n, U̇ = dU /dx, and Ü = d2U /dx2, and since the first-
order derivative of the potential at the equilibrium X is zero, one obtains

Uharm(δx)= 2−1ω2δx2 +const., ω= [U ′′(X )]1/2, (4.2)

where the constant is the zero point of the potential (which actually has
no fundamental effects on the dynamics processes). The above one is
called the harmonic potential, and the solution of which could be obtained
exactly. Now, if one tries to study the behavior of the particle far from the
equilibrium position X , the natural treatment is investigating the effects
from the high order terms (e.g., the term δx3) perturbatively based on
the harmonic solution. This is the frequently-used method in physical
problems: Firstly obtaining the solution via the simple approximation
(here it is given by Uharm(δx), the terms like this are often called the non-
interacting terms), and then perturbatively computing the high order
effects based on the simple solution. Furthermore, the oscillation around
the meta-stable stats Xms

i is also important and the transition from the
meta-stable states to the global ground state is one of the most exciting
problems in modern field calculations.3

2This form of the energy is often obtained from the linear response theory. The
g in non-harmonic systems could be negative and the form of the potential energy
even be non-quadratic, e.g., the gravity potential UG(r)=−GM/r.

3In modern physics, the tunneling between the true vacuum state and the false
vacuum is an important issue, see, e.g., S. Coleman, Fate of the False Vacuum:
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Consider the extra force f δ(x) based on Hooke’s force in the harmonic
system, δx → x. In this situation the energy conservation equation be-
comes 2−1mẋ2 +2−1kx2 +Uδ(x) = 2−1kX2 +Uδ(X ), where X the maxi-
mum distance the oscillator could reach, and Uδ(x) is the potential due
to the extra force. If the extra potential is homogeneous with order α,
i.e., Uδ(λx)=λαUδ(x), the period of the system is given by

T = 4
√

m
k

∫ π/2

0
dϕ

[
1+ 2Uδ(X )[1−sinαϕ]

kX2 cos2ϕ

]−1/2

. (4.3)

In certain situations one can do perturbative calculations for the relevant
quantities by expanding around the ξ= 2Uδ(X )[1−sinαϕ]/kX2 cos2ϕ.

As an elementary example, taking the extra force as f δ(x)=−ax3(a >
0),ξ = (aX2/2k)(1 + sin2ϕ), the effective potential is then given by
Ueff(x) = Utot(x) = 2−1kx2 +4−1ax4 (the effective potential like this has
actually little use since the high order term here still contains the dynam-
ical variable “x”), characterizing the cubic response to the perturbation.
One could obtain to order a2 that,

T ≈ 2π
√

m
k

×
(
1− 3aX2

8k
+ 57a2X4

256k2

)
, (4.4)

and the perturbative condition is aX2/k ¿ 1, or equivalently Uδ(X ) ¿
U(X )/2. In this formula, if the following replacements, i.e.,

m/k ↔ l/g, X = χmaxl, a =−mg/6l3, (4.5)

are adopted, one immediately obtains the first-order correction coeffi-
cient 1/16 in the period (3.3) of the simple pendulum. However the
even higher order corrections could not be obtained simply through
(4.4), since the period of the simple pendulum contains the higher or-
der corrections from sinχ (in fact the extra force f δ(x) = ax3 is sim-
ilar as the cubic term χ3 of the pendulum). The correction directly
from the term ax3 corresponds to the conventional perturbation theo-
ries in field problems, and the one characterized by the correction factor
ζ(χmax)= 1+16−1χ2

max+(11/3072)χ4
max+·· · corresponds to the improved

perturbations, which are sometimes called the resummations.
The fourth-order correction (11/3072)χ4

max in the period of the sim-
ple pendulum could be decomposed into two terms: the χ2

max term and
the χ4

max term from the interacting energy E(χmax) = −mgl cosχmax ≈
−mgl(1− 2−1χ2

max + 24−1χ4
max + ·· · ), or equivalently the terms propor-

tional to χ and to χ3 in the force F(χ)=−mgsinχ≈−mg(χ−6−1χ3). One
could obtain the corresponding nonlinear effects simply by considering
the χ3 term based on the harmonic approximation, but the coefficient
is 19/3072 (via the formula (4.4)) instead of 11/3072. Resummation in-
dicates that besides the “direct” term —χ3, the higher order term orig-
inated from χ (e.g., the first term in sinχ ≈ χ−χ3/6) also contributes to
the coefficient 11/3072. This latter one is denoted as the “indirect” con-
tribution. In other words, there exists the mode-coupling between the
low modes (here characterized by χ) and the high modes (characterized
by χ3), i.e., χ3 ← (χ3)1 (direct term)+(χ1)3 (indirect high order terms). As
the index“n” appearing in χn becomes large, the mode-coupling pattern
will also become more fruitful.

At this point it is necessary to introduce the very basic concept of
effective theories. In the case of the aforementioned example on the
Hooke system with an extra force ax3, one could derive an effective
Hooke’s constant through the period of the system. In particular, accord-
ing to the period formula (3.2), one has T = 2π(m/keff)1/2 = 2πm1/2k−1/2

eff
where the effective spring constant is keff ≈ k(1+s1σ+s2σ

2)+O(σ3) with
σ= aX2/k ¿ 1. In order to reproduce the first two terms as shown in the
formula (4.4), i.e., −3σ/8 and 57σ2/256, one obtains the two coefficients
as s1 = 3/4, s2 =−3/128. The effective Hooke’s constant is thus

keff ≈ k×
(
1+ 3

4
σ− 3

128
σ2

)
, (4.6)

Semiclassical Theory, Phys. Rev. D 15, 2929 (1977); C. Callan and S. Coleman,
Fate of the False Vacuum. II: First Quantum Corrections, Phys. Rev. D 16, 1762
(1977). Discussions on topics of these papers are beyond the present lecture.

and in other applications one could use the effective potential Ueff(x) =
2−1keffx2 to do the calculation. Here the high order effects characterized
by the coefficient a appears in the effective potential without the “dy-
namical” variable “x”, and the small quantity σ= aX2/k is fundamental
for the effective theory.

EXERCISE 9: Assume the effective spring constant is keff ≈ k(1 +
s1σ+ s2σ

2 + s3σ
3 + s4σ

4), work out the value of s3 and s4.

However, there exist other approaches to construct the effective pa-
rameters, e.g., the Hooke’s constant in the presence of the nonlinear force
could also be obtained as keff = k+ aX2/2 by considering the maximum
distance, indicating other mechanisms need to be taken into account in
the construction of an effective theory. We have no attempt to intro-
duce/discuss these advanced issues in the present lecture. The effective
theories with the high order degrees of freedom integrated out are of-
ten called the “low-energy effective theories”. The maximum distance X
could further be expanded around X0 which is the maximum distance
without the extra force, see (6.5), and the construction of the effective
spring constant could become even more complicated, see expressions
(6.6) and (6.12). Section VI gives further calculations on these issues.

V. SPONTANEOUS SYMMETRY BREAKING: BASIS

It is straightforward to solving the time dependence of χ(t) for the
simple pendulum problem, and however one could also investigate the
relation between χ(t) and χ̇(t), the two-dimensional plane determined by
χ and χ̇ the phase space (plane). The curve in phase space is called the
phase curve (phase diagram). The relevant point is that one can study
the dynamical features of the system directly from its phase curve, in-
stead of solving the differential equation. The energy conservation for the
pendulum could be rewritten as 2−1χ̇2 +1− cosχ = Ẽ where Ẽ = E/mgl,
and ω = (g/l)1/2 = 1s−1. It is a dimensionless equation involving the χ

and χ̇, and the relation χ ∼ χ̇ predicted is shown in Fig. 5, where the
curve for the critical value Ẽ = 2 is also shown with magenta circles.

Fig. 5: Phase diagram of χ̇∼ χ where the points ±π de-
note the instability. The phase orbit is closed if Ẽ < 2
and the angle χ can not take the values ±π. The area
bounded by the closed orbit is characterized by the en-
ergy of the system, i.e., as the energy of the system in-
creases the area increases, indicating a large period.

It is obvious from
Fig. 5 that if the re-
duced energy Ẽ <
2, the phase curve
is closed, indicat-
ing that the motion
of the simple pen-
dulum is periodic.
Moreover, as the en-
ergy increases, the
area bounded by the
curve also increases.
On the other hand,
the orbit is close to
the circle when the
energy is small and
as the energy even-
tually increases the
orbit approaches to
ecliptic and finally
when the Ẽ equals
to 2, the orbit undergoes the fundamental distortion to the one shown by
the magenta circle. In the critical situation that Ẽ = 2, the two orbits are
cross with each other and separate the total phase diagram into different
regions. When Ẽ > 2, the orbits are well separated either in the upper
or in the lower parts and moreover these orbits are not closed, indicating
that the swing angle decreases or increases monotonically. More specifi-
cally, the pendulum now rotates around some direction which depends on
the initial velocity. Furthermore, as the energy increases even more the
phase orbit becomes flatter and more distant from the horizontal axes.
The period of the χ is 2π, and the two values for χ, i.e., ±π, are actually
the same position. Finally, if one glues the two points ±π, i.e., trans-
forming the phase plane into a cylindrical one, all the phase orbits will
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emerge on the surface of this cylindrical plane, and the periodic motion
will be limited within the boundary lines and the rotations will go away
around the cylindrical surface. For the critical situation, χ̇ = ±2cos χ

2 ,
one could further obtain χ̇= 2/cosh t, which is called the soliton solution
of the system. Physically the soliton solution could be understood as the
time-reverse state of the original one.

The nonlinear effects are generally important especially in some
certain situations, and some properties of the system could naturally
demonstrated via the nonlinear terms, which are often absent in the
harmonic system. Here we would like to introduce the very important
concept of the symmetry breaking via the inverted pendulum. In the
inverted pendulum, the ball with mass m is fixed by the spring at the
equilibrium angle β= 0. The ball moves under the influence of the grav-
ity and the elastic forces. Moreover, the torque provided by the spring
is given by M = −κβ with κ the Hooke’s constant for the spring. Conse-
quently the elastic potential is Uκ(β)= κβ2/2, while the gravity potential
is given by UG(β)= mgl(cosβ−1) (with the zero point selected at the top
of the system). Then the total potential energy is the sum of these two
terms, i.e., U(β)=Uκ(β)+UG(β)= 2−1κβ2 +mgl(cosβ−1).

−6 −4 −2 0 2 4 6
β

−2

0

2

4

6

8

10

Ũ
(β
)
=
U
(β
)/
m
gl

θ < 1

θ=1

θ> 1

Fig. 6: The reduced potential energy Ũ(β) as
a function of β with different θ = κ/mgl, and
θc = 1 is its critical value. If θ < θc, the SSB
occurs and two possibilities are: a) the length
of the system is very large; b) the Hooke’s con-
stant κ is very small. In both cases, the SSB
indicates that the oscillations near the two
equilibrium states are independent.

The equilibrium state β0
is straightforwardly obtained
by the first-order derivative
of the potential, i.e., κβ −
mgl sinβ = 0. The critical
value for the length is given
as lc = κ/mg by calculating
the second-order derivative
of the potential, i.e., U ′′(β) =
κ−mgl cosβ= mg(lc−l cosβ).
The phenomenon that the
length l varies continuously
from the one smaller than
lc (then β0 = 0 is stable) to
the one larger than lc (then
β0 = 0 is unstable) and in
the mean while the situation
with only one oscillation cen-
ter (at β0 = 0) evolves into the
one with two oscillation cen-
ters (at β0 , 0 with β0 given
by the non-zero solution of
the equation κβ−mgl sinβ = 0), strongly indicating that the the struc-
ture of the phase diagram undergoes some fundamental (topological)
changes, is generally called the bifurcation. In the case that l > lc al-
though the overall phase diagram is symmetric, the particle (ball) could
only oscillate near any one of these two equilibrium positions. From the
viewpoint of classical mechanics the ball could not penetrate from one
equilibrium state into the other, indicating some breaking of the orig-
inal symmetry occurs. On the other hand, there still exists some pos-
sibilities that the particle could penetrate from one equilibrium state
into the other, and this phenomenon is called the tunning in quan-
tum mechanics. The above phenomenon, i.e., the symmetry pattern of
the system undergoes some sudden change due to the external param-
eters (like lc), is generally called the spontaneously symmetry breaking
(SSB). After introducing the parameter θ = κ/mgl, the total potential of
the inverted pendulum could be rewritten into the dimensionless form,
Ũ(β)≡U(β)/mgl = 2−1θβ2 +cosβ−1, with its curve shown in Fig. 6. The
SSB occurs if θ < 1, i.e., the symmetry of the ground state (with the small-
est potential energy) is lower than that of the potential itself.

The ground state of the inverted pendulum is easily determined via
∂U(β)/∂β|β=B = 0, and if β is small one has B = [6(1−θ)]1/2 where without
losing generality the ground state is selected at the right equilibrium
position. If one introduces the fluctuation χ around the ground state by
β= B+χ, one could obtain the potential for the fluctuation as

Ũ(χ)≈−
√

27
50

(1−θ)5/2χ+ 1
4

(1−θ)(1+3θ)χ2+θ[(1−θ)/6]1/2χ3+Ũ0, (5.1)

where Ũ0 = 3θ3/16−12θ2/5+39θ/10−9/5. Due to the cubic term χ3, the
potential Ũ(χ) already has no the symmetry “χ ↔ −χ”, demonstrating
that the symmetry is broken. Moreover, the term 4−1(1− θ)(1+ 3θ)χ2

could be understood as the mass term of the χ.

EXERCISE 10: Work out expressions for the 4th-order and 5th-order
self-interactions for the χ field by expanding Ũ(χ) to χ5.

EXERCISE 11: Design numerical algorithm to solve θβ= sinβ for 0<
θ < 1, and develop first-order correction to the solution

p
6(1−θ).

U

X1 X20

U0

x

Fig. 7: Unsymmetric potential with |X1| < |X2|.

Assuming β is
small, one then
has Ũ(β)≈ 2−1(θ−
1)β2 + 24−1β4.
The β plays some
similar roles as
the Higgs particle
in modern the-
oretical physics.
For example, via
the SSB of the
self-interaction
of the Higgs’ field U(ϕ) = −2−1µ2ϕ2 + 4−1λϕ4 (µ ∈ R,λ > 0,ħ = 1), one
could obtains the mass of the Higgs’ particle as mH = (2λ〈ϕ〉2)1/2, with
the average squares given by 〈ϕ〉2 = µ2/λ. The SSB in the inverted
pendulum is characterized by the term θ(1−θ)1/26−1/2χ3. The simplest
unsymmetric potential is shown in Fig. 7, where |X1| < |X2|, e.g.,
U(x) = n1x3 + n2x2 with n1 = U0(ν−1)/ν2X3

1 ,n2 = U0(ν2 −ν+1)/ν2X2
1 ,

and ν=−X2/X1. Based on this potential, several interesting dynamical
quantities could be investigated, e.g., one can treat the cubic interaction
as a perturbation and do relevant calculations, alternatively another
perturbative scheme based on ν= 1+ f with f small could be developed.

EXERCISE 12: Work out the period of the motion in potential of
Fig. 7 upto quadratic order of f . Demonstrate the range of ν and then
show f could really be treated as perturbatively.

VI. PERTURBATION THEORIES: IMPLICIT FORM

In some problems it is very difficult to solve the quantity involved ex-
plicitly and then do the perturbative calculations, e.g., the solution of the
algebraic equation (2.1). In these situations some general guidance is as
follows: Perturbatively expanding the two sides of the equation (often the
definition of the physical quantity involved) at the same time (this step
avoids the solution of the equation), and then match the terms on both
sides order by order. We call the calculation like that the “integration
form” (or the implicit form) of the perturbation. On the other hand, the
approach first obtaining the explicit expression of the relevant quantity
and then expanding it around some fixed point the “differential form” of
the perturbation. Generally, one can think that the “differential form” of
the perturbation method is as a special case of the “integration forms” of
the perturbation method, with the latter providing certain convenience
from treating complicated problems.

UR

UR

0 t

α β

γ

δ

tc

Fig. 8: Time dependence of relative
velocity of the head-head collision.

We now use the harmonic oscil-
lator with the nonlinear effects to
calculate the critical time tc and
the maximum compressed distance
Lmax between to colliding balls. This
is a typical example of the “integra-
tion form” of the perturbation the-
ories. The maximum compressed
distance Lmax and the correspond-
ing critical time tc are two funda-
mental quantities characterizing the
compression process, and moreover
these two quantities, i.e., Lmax and
tc, are closely related via the interaction between the two balls, thus it
is very interesting to investigate how the nonlinear force (besides the
conventional Hooke’s linear force) affect these quantities. The simplest
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kinetic description is as follows: Two balls with initial relative velocity
UR = u1 − u2 (here u1 > u2) collide with each other head to head reach
the maximum compressed distance Lmax at critical time tc, the corre-
sponding compressed velocity is denoted by Vc. See Fig. 8 for sketch of
the time dependence of relative velocity UR.

The simplest form for the relative velocity is thus UR(t) = UR + At,
where A is an effective acceleration (which is negative), the compressed
distance is straightforwardly obtained as L(t) = ∫ t

0 UR(t)dt = URt +
2−1 At2. Consequently, the critical time is given by tc =−UR/A, and the
maximum compressed distance is Lmax = L(tc) = 2−1URtc = −U 2

R /2A.
These calculations are effectively corresponding to the α case shown in
Fig. 8. In this situation the relation between the Lmax and the critical
time tc is very simple, i.e., Lmax/tc = 2−1UR. The assumption on the
constant effective acceleration A during the compression process is un-
realistic, and in the general cases the relative velocity has the basic form
UR(t)=UR+Q(t), where Q(t) is a function of the time t with initial value
Q(0)= 0 and Q(t)< 0 if t > 0. The equation determining the critical time
is UR(tc)= 0, i.e., UR +Q(tc)= 0. Correspondingly,

Lmax =−tcQ(tc)+
∫ tc

0
Q(t)dt, (6.1)

which only depends on the tc and the relative velocity Q.
For example, if Q(t) = −βtn, where β > 0 and n > 1, see the β case

shown in Fig. 8, we now have the critical time and the maximum com-
pressed distance,

tc =
(
UR
β

)1/n
, Lmax = nβ

n+1

(
UR
β

)1+1/n
= URtc

1+1/n
. (6.2)

Similarly, if the function Q(t) takes the form Q(t) = −γsin(t/T), where
T ≥ 2tc/π,γ>UR with T a constant, see the γ case shown in Fig. 8, then
the critical time is given by tc = T arcsin(UR/γ), and

Lmax =URtc +γT

√
1−

(
UR
γ

)2
−1

≈ 1
2
URtc

(
1− 1

12

(
tc
T

)2
)

. (6.3)

If the velocity decreases uniformly/linearly from an initial value UR, then
the relation between the maximum compressed distance and the criti-
cal time is simply Lmax = 2−1URtc. In the first example as n increases
the in-front factor 1/(1+1/n) eventually becomes larger than 1/2 and ap-
proaches to the limit value of 1 as n → ∞. In the second example, the
in-front factor formally expressed as 2−1[1−12−1(tc/T)2] is smaller than
1/2, which is different from that in the first example.

We assume that the interaction between the two balls when colliding
with each other includes not only the Hooke’s force but also the high
order terms with the simplest case being that f (x)=−kx−ax3,a > 0, see
discussions of section IV. Consequently the energy conservation gives
2−1µU 2

R = 2−1kX2 +4−1aX4, where X = La
max,µ = m1m2/(m1 +m2) is

the reduced mass of the two balls. One obtains

X = (k/a) ·
(√

1+2aµU 2
R /k2 −1

)
. (6.4)

The parameter a is in general not a small quantity and the perturbatvie
condition is σ= 2aµU 2

R /k2 ¿ 1, thus the above expression is the general
solution. On the other hand if 2aµU 2

R /k2 ¿ 1, then one could naturally
make perturbative calculation for (6.4), leading to

La
max ≈

(
µU 2

R
k

)1/2 [
1−

aµU 2
R

4k2 +
7a2µ2U 4

R
32k4

]
, (6.5)

where Lmax ≡ L0
max ≡ X0 = (µU 2

R /k)1/2 is the maximum distance in the
Hooke case. Defining the effective Hooke’s “constant” via 2−1keffX2 =
2−1kX2 +4−1aX4 gives (see formula (4.6) for comparison),

keff ≈ k+
aµU 2

R
2k

[
1−

aµU 2
R

2k2 +
a2µ2U 4

R
2k4

]
= k

(
1+σ−σ2 +2σ3

)
. (6.6)

One could obtain the maximum compressed distance analytically in
the above simple situation and however the analytical solution in the
general situation is often very hard to obtain, i.e., solving the energy
conservation equation is very difficult. Moreover, it is also very difficult
to solve the differential equation to obtain the critical time tc analyti-
cally even in this simplest case since the corresponding equation is given
by µẍ+ kx+ ax3 = 0. Now we are only interested in the case that the
nonlinear interactions are perturbations, and assuming that the inter-
action takes the form as f (x) = −kx− f δ(x), where x is the compressed
distance and f δ(x) the nonlinear force with f δ > 0. Moreover, assume
that the potential corresponding to f is denoted by Uδ(X ), where X is
the maximum compressed distance. Consequently the energy conserva-
tion gives the equation 2−1µU 2

R = 2−1kX2+Uδ(X ), from which one could
determine the perturbative expression for the X . See section IV.

For example, if the extra force scales as f δ ∼ x3 (section IV), the energy
conservation equation could be solved analytically. On the other hand,
the analytical solution is impossible for general force f δ. The energy
conservation equation could be rewritten in the form 2−1µẋ2 +Utot(x) =
E, where E =µU 2

R /2 is the total energy and Utot(x)= kx2/2+Uδ(x) is the
potential energy during the compression process, solving it gives

tc = 1
UR

∫ X

0
dρ

(
1− kρ2

µU 2
R

)−1/2 [
1− 2Uδ(ρ)

µU 2
R −kρ2

]−1/2

. (6.7)

If the nonlinear force is absent, i.e., Uδ = 0, the above expression gives

t0c = 1
UR

∫ X

0
dρ

(
1− kρ2

µU 2
R

)−1/2

= π

2

√
µ

k
, (6.8)

which is the solution for the free model.
For the general case involving the nonlinear force, one needs to use the

“integration form” of the perturbative method. Assume that the charac-
teristic perturbative quantity of the problem is d, and X = X0(1+Φ1d+
Φ2d2 + ·· · ). By putting it into the energy conservation equation and
then comparing both sides of the equation of the terms d i , one could
gain the expressions for Φi ’s. The similar method can be applied to
compute the critical time tc. For example, for the extra force scales as
f (x) = −dx2n+1 with n > 1 an integer, the energy conservation equation
gives 2−1µU 2

R = 2−1kX2 +dX2n+2/(n+2), where X = Ld
max is the maxi-

mum distance depending on the quantity d. Since there exists a charac-
teristic factor d in front of the term X2n+2, one approximates X2n+2 only
to order d. Put them into the energy conservation equation and make the
coefficients in front of d and d2 zero gives the needed quantities Φ1 and
Φ2, the final result to order d2 for the maximum compressed distance is

X ≈X0

[
1−

(
1

2n+2

µnU 2n
R

kn+1

)
d+

(
4n+3

8n2 +16n+8

µ2nU 4n
R

k2n+2

)
d2

]
. (6.9)

EXERCISE 13: Assume the force for the collision process is given by
F =− f0(eβt/tc −1) for 0≤ t ≤ tc, where β, f0 > 0. Derive the expression for
the critical time tc. Show that if β¿ 1,

Lmax ≈
µU 2

R
f0

(
4

3β
− 7

18
+ 1

45
β+ 1

405
β2

)
, (6.10)

explain the appearance of the first term.

In order to obtain the critical time tc, it is difficult to start directly from
the Eq. (6.7) since the small quantity d appears both in the integration
ranges and in the function of the form

∫ X (d)
0 F (ρ,d)dρ, it is essentially

difficult to deal with.4 However one could write the relevant expressions
in terms of d and then introduce the perturbative structure of the X , i.e.,

tc =
√

µ

k

∫ π/2

0

dϕ√
1+ξ

≈
√

µ

k

∫ π/2

0
dϕ

(
1− 1

2
ξ+ 3

8
ξ2

)
, (6.11)

4The structure is
∫ X0(1+Φ1d+Φ2d2)
0 [F (ρ,0) +F ′(ρ,0)d + 2−1F ′′(ρ,0)d2]dρ,

where the dependence of the quantity X on d is emphasized.
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where ξ= [dX2n/k(n+1)]
∑n

j=0 sin2 j ϕ. The result to order d2 is,

tc

t0c
≈1− X2n

p
πk

Γ(n+3/2)
Γ(n+2)

d+ 3gn
4π

X4n

k2(n+1)2
d2

≈1− 1p
π

Γ(n+3/2)
Γ(n+2)

ν+
(

3gn
4π

1
(n+1)2

− 2nkΦ1

X2n
0

p
π

Γ(n+3/2)
Γ(n+2)

)
ν2, (6.12)

where Φ1 is defined in (6.9), ν= X2n
0 d/k, and gn = ∫ π/2

0 dϕ(
∑n

j=0 sin2 j ϕ)2.

In the second line, the X is expanded around X0 to order d2 (or equiva-
lently to order ν2.). If we treat the collision process is described by the
Hooke’s force with extra nonlinear interaction, then the effective spring
constant could be constructed as to order ν2,

keff/k ≈ 1+ 2p
π

Γ(n+3/2)
Γ(n+2)

ν

+
[

3
π

(
Γ(n+3/2)
Γ(n+2)

)2
−2

(
3gn
4π

1
(n+1)2

− 2nkΦ1

X2n
0

p
π

Γ(n+3/2)
Γ(n+2)

)]
ν2. (6.13)

Finally we give a mathematical example on using the “implicit form”
of the perturbative method. Introducing the function χ(x) = 1− xβ and
its inverse function χ−1(x) = (1− x)1/β with 0 ≤ x ≤ 1, we denote X (β) the
zero of the function χ(x)− x, with the former also the zero of the function
χ−1(x)− x and the function f (x) = χ(x)−χ−1(x) based on the relations
among them. The aim of this example is to calculate the derivatives of
the function X (β) with respective to β and obtain the its value at β= 1.

EXERCISE 14: Work out explicitly the expressions for dX /dβ and
d2X /dβ2 and then calculate the values of X ′(1) and X ′′(1).

We could also obtain the needed derivatives via the “integration form”
of the perturbative method as follows. First introducing the small quan-
tity ϵ= 0+, and then writing the β as β= 1+ϵ, one obtains

X (β)≈X (1)+ X ′(1)ϵ+ 1
2

X ′′(1)ϵ2 +·· · , X (n)(1)≡ ∂n X
∂βn

∣∣∣∣
β=1

, (6.14)

Xβ(β)≈
(

1
2
+ X ′(1)ϵ+ 1

2
X ′′(1)ϵ2 +·· ·

)1+ϵ
≈ 1

2
+a1ϵ+a2ϵ

2 +·· · , (6.15)

using the formula a1+ϵ ≈ a[1+ ϵ loga+ 2−1ϵ2 log2 a] for small ϵ, where
a1,a2, · · · , are coefficients to be obtained order by order. Putting these
expansions into the equation Xβ(β)+ X (β)−1= 0 leads to

(
a1 + X ′(1)

)
ϵ+

(
a2 +

1
2

X ′′
1 (1)

)
ϵ2 +·· · = 0. (6.16)

By matching both sides of the equation, one easily obtains the X ′(1),
and then a2 (since a2 depends on the a1), and consequently X ′′(1),
etc. In principal the derivatives to all orders could be obtained in this
manner, however the calculations become more complex as the order
of the derivative increases. For example we have to order ϵ2, we have
X (β)= 2−1 + X ′(1)ϵ+2−1X ′′(1)ϵ2, and consequenty,

Xβ(β)=1
2
+

(
X ′(1)− log2

2

)
ϵ

+
(

1
2

X ′′(1)+ X ′(1)− X ′(1)log2+ log2 2
4

)
ϵ2, (6.17)

from which one obtains X ′(1)= 4−1log2 and X ′′(1)=−4−1log2.
After some straightforward algebraic derivations, we obtain the gen-

eral equation determining the first n derivatives X (i)(1) (i = 1∼ n),

n∑
i=1

X (i)(1)ϵi

i!
− 1

2
+

[
1
2
+

n∑
i=1

(−ϵ log2)i

2i!

]
×1+

n∑
j=1

∏ j
k=1(2+ϵ−k)

j!

(
n∑

ℓ=1

2X (ℓ)(1)ϵℓ

ℓ!

) j
= 0. (6.18)

In these applications the conceptual ϵ= 0+ is very fundamental, although

it does not matter what the exact value is. This is the intrinsic property
of the integration form of the perturbation theories.

EXERCISE 15: Obtain the value of X ′′′(1) using the implicit method.
EXERCISE 16: Denote eJ = T +UJ as the single nucleon energy in

asymmetric nucleonic matter with density ρ = ∑
J=n,pρJ and isospin

asymmetry δ = (ρn −ρp)/(ρn +ρp), here T = k2/2M is the kinetic energy
with M being the static mass of nucleons, and UJ =UJ (ρ,δ,k) is the sin-
gle nucleon potential. The density ρJ and the momentum k is connected
via the Fermi relation as kJ

F = (3π2ρJ )1/3 where kJ
F is called the Fermi

momentum for nucleon J. The value of eJ at the Fermi momentum is
called the chemical potential and is denoted as µJ which is function of
ρ and δ (and not of momentum k). Thermodynamic relation tells that
µJ = ∂[ρE(ρ,δ)]/∂ρJ where E(ρ,δ) ≈ E0(ρ)+Esym(ρ)δ2 +·· · is the equa-
tion of state of the system and Esym(ρ) is the symmetry energy. Derive
using the integration form of the perturbative method the expressions for
Esym(ρ) and L(ρ)= 3ρdEsym(ρ)/dρ in terms of U0,Usym and Usym,2, with
them defined via UJ (ρ,δ,k) = U0(ρ,k)+Usym(ρ,k)τJ

3 δ+Usym,2(ρ,k)δ2

under the convention τn
3 =+1 (neutron) and τ

p
3 =−1 (proton).

APPENDIX: DISCUSSION ON POLYNOMIALS

The polynomial is the most important form of the perturbative ex-
pansion in these calculations. Specifically, the function f (x) could be ex-
panded for example around x = 0 to be f (x)≈ f (0)+ f ′(0)x+2−1 f ′′(0)x2 +
·· · . The polynomial expansion is very efficient in the sense that as long
as the number of the model parameters is large enough, one could obtain
almost any structure wanted. However, it is necessary to point that the
starting point of the polynomial expansion is the existence of the small
quantity (quantities), and neglecting this starting point in some cases
maybe serious. It also indicates that the effectiveness of the perturbative
expansion, or more generally the “effectiveness” of the effective theories.

For example, the single particle energy in special relativity is given
by E = (k2 +M2)1/2 where k is its momentum, and its non-relativistic
approximation E ≈k2/2M−k4/8M3 is effective when the quantity |k|/M
is small. However when |k| ∼ 2M the non-relativistic description itself
is meaningless and the whole relativistic expression should be adopted.
One of the equivalent treatments frequently used in the practical ap-
plications is to consider the coefficient in front of the k4 term as an ef-
fective parameter, i.e., E ≈ k2/2M +αk4, and determine the parameter
α in some certain cases. Once the α is fixed by this way, the energy
E with the parameter α could be used in other problems. We want to
point out that the approach discussed here actually breaks the original
structures of the theory, indicating it maybe not a good choice. Specifi-
cally, the k in the calculated quantities may already on the same order of
[2M|α|]−1/2. It is also important to keep in mind that the real effective
region is |k|¿ [2M|α|]−1/2 instead of |k|≲ [2M|α|]−1/2.

Finally, we briefly comment on the simple pendulum from the view-
point of the polynomial expansion. The simple pendulum is actually a
very useful elementary mechanical model, e.g., it could be treated as a
microscopic gravity field. For the necessity we introduce the function
w(χ) = ∣∣∂ f /∂χ

∣∣. At small angle χmax ¿ 1, one has wsmallangle(χ) ≈ mg =
const., while generally w(χ) = mgcosχ, which is not a constant and is
depending on χ, or equivalently on the equation of motion. The function
w(χ) could be expanded and thus w(χ) = mg(1−2−1χ2 +24−1χ4 −·· · ). If
the angle is very small (e.g., near zero), the swing pattern of the ball is es-
sential linear, which is in fact the geometrical meaning of the small-angle
approximation. This feature is very similar as the one involved in gen-
eral relativity, with the main idea that the space could be treated as flat
at large scales, e.g., one could hardly figure out the curvature properties
of the earth and could only treat it as flat effectively. The interesting and
fruitful structures of the simple pendulum is originated from the non-
Hooke’s elasticity from the viewpoint of physics and the complexity of
the function sinχ (compared with χ) from the viewpoint of mathematics.

The author would like to thank the colleagues of the INSTITUTE OF INNOVATION

at Shadow Creator for long-time support and help.
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Solutions to Exercises

1. We generally solve the equation (2.1) by setting

x(t)≈ x0
(
1+δ+ c2δ

2 + c3δ
3
)
, (s1)

where δ and c2 and c3 need to be determined. Naturally δ= kt, thus
at the third order, we have

xn(t)≈xn
0

[
1+nδ+

(
c2n+ 1

2
n(n−1)

)
δ2

+
(
c3n+ c2n(n−1)+ 1

6
n(n−1)(n−2)

)
δ3

]
, (s2)

for the left hand side of Eq. (2.1). In order to expand the right hand
side to the third order, we notice that δ= kt ∼ t, thus

Ω+ tx
Λ

≈Ω+ tx0
Λ

(
1+δ+ c2δ

2 + c3δ
3
)
≈Ω+ δx0

kΛ

(
1+δ+ c2δ

2
)
, (s3)

where t = δ/k is used. Compare the equations (s2) and (s3), one has

(a) For the zeroth-order theory, we have x0 =Ω1/n.

(b) For the first-order theory, we obtain k = x1−n
0 /nΛ=Ω1/n−1/nΛ.

(c) Similarly for the second-order and the third-order theories, one
can obtain

c2 = 3−n
2

, c3 = n2 −6n+8
3

, (s4)

thus

x(t)≈ x0

[
1+δ(t)− n−3

2
δ2(t)+ n2 −6n+8

3
δ3(t)

]
, (s5)

for small t approximation.

The conditions for the first-, second- and third- order theories are
given respectively by,

δ(t)¿ 1, δ(t)¿ 2
n−3

, δ(t)¿ 3
2

n−3
n2 −6n+8

, (s6)

where n ≥ 5. Denote f1 = 1, f2 = 2/(n−3) and f3 = 3(n−3)/2(n2−6n+8),
one can show that f2 ≤ f1, and f3 ≤ f2, as

f3
f2

= 3
4

(
1+ 1

n2 −6n+8

)
≤ 3

4

(
1+ 1

3

)
= 1, (s7)

where the equality holds when n = 5. These results show that as the
expansion order increases, the effective perturbative region shrinks.
However the expansion becomes better, as discussed in the main con-
text and shown in Fig. s1. On the other hand, for the asymptotic per-
turbation, one already has x∞(t)= (t/Λ)n/(n−1). By setting

x(t)≈ x∞(t)
(
1+ϕ+d2ϕ

2 +d3ϕ
3
)
, (s8)

one obtains

LHS=
(

t
Λ

) n
n−1 +nϕ

(
t
Λ

) n
n−1 +

(
t
Λ

) n
n−1

[(
nd2 +

1
2

n(n−1)
)
ϕ2

+
(
nd3 +d2n(n−1)+ 1

6
n(n−1)(n−2)

)
ϕ3

]
, (s9)

RHS=Ω+
(

t
Λ

) n
n−1 +ϕ

(
t
Λ

) n
n−1 +

(
t
Λ

) n
n−1 (

d2ϕ
2 +d3ϕ

3
)
. (s10)

Comparing order by order gives

ϕ= Ω

n−1

(
Λ

t

) n
n−1

, d2 =−1
2

n, d3 = 1
3

n(n+1). (s11)

Thus
x(t)≈ x∞(t)

[
1+ϕ(t)− 1

2
nϕ2(t)+ 1

3
n(n+1)ϕ3(t)

]
. (s12)

The conditions for the first-, second- and third- order theories are
given respectively by,

ϕ(t)¿ 1, ϕ(t)¿ 2
n

, ϕ(t)¿ 3
2(n+1)

, (s13)

where n ≥ 5. Denote g1 = 1, g2 = 2/n and g3 = 3/2(n+1), one can show
that g2 < g1, and g3 < g2, as

g3
g2

= 3n
4(n+1)

≤ 5
8

. (s14)

See Fig. s1. If one still sets x3rd
small−t(t)≈ x3rd

large−t(t) then 0≲ t≲ 1.48.

10-2 10-1 100 101

t

1.0

1.1

1.2

1.3

1.4

x
(t
)

exact
small-t, 1st order
large-t, 1st order
small-t, 2nd order
large-t, 2nd order
small-t, 3rd order
large-t, 3rd order

Fig. s1: Solution of Eq. (2.1) where n = 6,Λ=Ω= 1, to third order.

2. This is the direct generalization of EXERCISE 1. For the small t limit,
one still has x0 =Ω1/n, and by expanding the left and right hand sides
of the equation, we obtain

LHS≈xn
0

[
1+nδ+

(
c2n+ 1

2
n(n−1)

)
δ2

+
(
c3n+ c2n(n−1)+ 1

6
n(n−1)(n−2)

)
δ3

]
, (s15)

RHS≈Ω+
xm

0 δ

kΛ

[
1+mδ+

(
c2m+ 1

2
m(m−1)

)
δ2

]
, (s16)

where the left hand side is just (s2) and the coefficient k is intro-
duced through δ = kt. Comparing them order by order gives δ(t) =
(1/nΛ)Ωm/n−1, and

c2 =1
2

(2m−n+1), (s17)

c3 =1
2

(
(2m−n+1)(m−n+1)+m(m−1)− 1

3
n(n−1)(n−2)

)
, (s18)

thus

x(t)≈Ω1/n
[
1+δ(t)+ 2m−n+1

2
δ2(t)

+ 1
2

(
(2m−n+1)(m−n+1)+m(m−1)− 1

3
n(n−1)(n−2)

)
δ3(t)

]
.

(s19)

On the opposite limit, i.e., large t, we have now x∞(t) = (t/Λ)1/(n−m),
and

LHS=
(

t
Λ

) n
n−m +nϕ

(
t
Λ

) n
n−m +

(
t
Λ

) n
n−m

[(
nd2 +

1
2

n(n−1)
)
ϕ2

+
(
nd3 +d2n(n−1)+ 1

6
n(n−1)(n−2)

)
ϕ3

]
, (s20)

RHS=Ω+
(

t
Λ

) n
n−m +mϕ

(
t
Λ

) n
n−m +

(
t
Λ

) n
n−m

[(
md2 +

1
2

m(m−1)
)
ϕ2

+
(
md3 +d2m(m−1)+ 1

6
m(m−1)(m−2)

)
ϕ3

]
. (s21)
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From them, we have

ϕ= Ω

n−m

(
Λ

t

) n
n−m

, (s22)

and

d2 =− n+m−1
2

, (s23)

d3 =1
2

(n+m−1)2 − 1
6

(
n2 +nm+m2 −3(n+m)+2

)
, (s24)

and consequently,

x(t)≈
(

t
Λ

) 1
n−m

[
1+ϕ(t)− n+m−1

2
ϕ2(t)

+
(

1
2

(n+m−1)2 − 1
6

(
n2 +nm+m2 −3(n+m)+2

))
ϕ3(t)

]
. (s25)

3. Denote the intersection between the lines x1st
small−t(t) and x1st

large−t(t)

as x(1)
c , then the absolute value of the area S1 formed by the exact

solution, the first-order curves both for small t and large t is given by

S1 =
∣∣∣∣∣
∫ x(1)

c

0
dtx1st

small−t(t)+
∫ ∞

x(1)
c

dtx1st
large−t(t)−

∫ ∞

0
dtxexact(t)

∣∣∣∣∣ , (s26)

here the first two integrations could be evaluated using the analytical
expressions. However the last one can only be evaluated by some nu-
merical algorithms, e.g., the Simpson’s method. Since the difference
between the large-t and the exact curves are small at t ≳ 10, the “∞”
in the above integrations could be safely replaced by a large value,
e.g., 10. Consequently, one obtains

S1 ≈ 0.0757. (s27)

Very similarly,

S2 =
∣∣∣∣∣
∫ x(2)

c

0
dtx2nd

small−t(t)+
∫ ∞

x(2)
c

dtx2nd
large−t(t)−

∫ ∞

0
dtxexact(t)

∣∣∣∣∣ , (s28)

S3 =
∣∣∣∣∣
∫ x(3)

c

0
dtx3rd

small−t(t)+
∫ ∞

x(3)
c

dtx3rd
large−t(t)−

∫ ∞

0
dtxexact(t)

∣∣∣∣∣ , (s29)

where x(2,3)
c is the intersection between the lines x2nd,3rd

small−t(t) and

x2nd,3rd
large−t (t). Consequently, S2 ≈ 0.0210 and S3 ≈ 0.0112. See Fig. s2

for the full curves by linking the small-t and the large-t solutions.
From this figure it is shown that the third order result gives very
close prediction from the exact theory.
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t
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1.4

x
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exact
1st order
2nd order
3rd order

Fig. s2: Solution of Eq. (2.1) where n = 6,Λ=Ω= 1 using the full curves.

4. Assume that the ball moves under the initial condition χ = 0 and
v(0) = lχ̇(0) = V . The equation of motion of the ball is given by
ẍ+ gsinχ = 0, or χ̈+ (g/l)sinχ = 0, since x = χl. For small angle, we
have sinχ ≈ χ, the equation of motion becomes χ̈+ (g/l)χ = 0. The
general solution of this equation is χ(t) = asinωt+ b where ω2 = g/l.

The constants a and b could be determined via the initial condition
as a = V /

√
gl and b = 0, i.e., χ(t) = (V /

√
gl)sinωt. Consequently, the

period of the motion is obtained namely T = 2π/ω= 2π
√

l/g.

5. The indices µ,ν and σ could not be any real numbers since any quan-
tity f should be a rational composition of the quantities with mass,
length and time as their basic units, through linear equations.

6. The solution for the equation χ̈+ϕχ= 0 under the corresponding ini-
tial conditions is χ0(t) ≡ (C/

√
ϕ)sin

√
ϕt. When the term −6−1ϕχ3 is

included, we denote the general solution as χ(t)= χ0(t)[1+∆(t)] where
∆(t) is the perturbation owning the property:

|∆(t)|¿ 1, (s30)

and moreover ∆(t) is assumed to be a slow-varying function. In this
sense, the equation of motion becomes

∆̈(t)+ 2χ̇0(t)
χ0(t)

∆̇(t)− 1
2
ϕχ2

0(t)∆(t)≈ 1
6
ϕχ2

0(t), (s31)

where the equation of motion for χ0(t), i.e., χ̈0(t)+ϕχ0(t) = 0 is used
when deriving the above equation. Since ∆(t) is a slow-varying func-
tion, the first term on the left hand side will be neglected in the fol-
lowing study. Moreover, according to (s30), one can neglect the third
term on the left hand side when compared with the right hand side.
Consequently, one has

∆̇(t)≈ 1
12

ϕχ3
0(t)

χ̇0(t)
, (s32)

and this is the equation we want to solve. The result is

∆(t)=− C2

12ϕ

(
1
2

sin2 √
ϕt+ log

∣∣∣cos
√

ϕt
∣∣∣) , (s33)

using the general formula,∫
sin2 ax
cosax

dx =− 1
2a

sin2 ax− 1
a

log |cosax|+const. (s34)

Consequently,

χ(t)≈ C√
ϕ

sin
√

ϕt

[
1− C2

12ϕ

(
1
2

sin2 √
ϕt+ log

∣∣∣cos
√

ϕt
∣∣∣)] . (s35)

Fig. s3 gives an example where C = 1 and ϕ= 1.2. The breakdown at√
ϕt = π/2 is due to the second term of (s33). The exact (numerical)

result could be obtained by, e.g., the Euler’s algorithm or the Runge–
Kutta method, here we adopt the 4th order Runge–Kutta algorithm.
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exact

Fig. s3: Example of EXERCISE 6 with C = 1 and ϕ= 1.2.
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7. From the formula for the root, one can obtain,

x∗ = b
2a

(p
1−k−1

)
≈− b

2a
· k

2

(
1+ k

4

)
, (s36)

where k = 4ac/b2. The above result is

x∗ ≈− c
b

(
1+ ac

b2

)
. (s37)

On the other hand, if one starts from the root for the linear equation,
i.e., x0 =−c/b, of bx+ c = 0, and then sets x ≈ x0(1+ p), the correction
p is easy to find as through putting it into ax2 + bx+ c = 0 under the
assumption that ac/b2 is small,

p = ac2

b

/(
c− 2ac2

b2

)
≈ ac

b2 , (s38)

which is the same as the one obtained already.

8. For the simple pendulum with small swing angle with χ≲ 5◦, the ki-
netic energy, the potential energy and the total energy of the pen-
dulum are given by K(χ̇) = ml2χ̇2/2,U(χ) = mglχ2/2,E = mgl(1 −
cosχmax) ≈ mglχ2

max/2(the zero point of the potential energy is se-
lected at the bottom of the oscillation), consequently f = ml2/2, g =
mgl/2, and one has ω = (g/l)1/2,T = 2π(l/g)1/2. If the zero point
of the potential energy is selected at the top of the oscillation,
U(χ) = −mgl cosχ ≈ mglχ2/2− mgl,C = −mgl,E = −mgl cosχmax ≈
mglχ2

max/2−mgl, and E−C = mglχ2
max/2, indicating the relevant re-

sults are independent of the selection of the zero point. Next, denote
χ1 and χ2 the angles of the oscillation of the two pendulums, l the
length and m the mass. Then the kinetic energies and the potential
energies are given,

K1(χ̇1)=1
2

ml2χ̇2
1, (s39)

K2(χ̇1, χ̇2)=1
2

ml2 (
χ̇1 + χ̇2

)2 , (s40)

U1(χ1)=−mgl cosχ1 ≈−mgl
(
1− 1

2
χ2

1

)
, (s41)

U2(χ1,χ2)=−mgl
(
cosχ1 +cosχ2

)≈−mgl
(
2− 1

2
χ2

1 −
1
2
χ2

2

)
. (s42)

Thus, the total energy is obtained,

E(χ1,χ2, χ̇1, χ̇2)≈1
2

ml2
(
2χ̇2

1 +2χ̇1χ̇2 + χ̇2
2

)
−mgl

(
3−χ2

1 −
1
2
χ2

2

)
. (s43)

In order to remove the cross term χ̇1χ̇2, we introduce the new coordi-
nates ϕ= p

2χ1+χ2 and φ= p
2χ1−χ2, then the total energy becomes

E(ϕ,φ, ϕ̇, φ̇)=2+ p
2

8
ml2ϕ̇2 + 1

4
mglϕ̇2

+ 2− p
2

8
ml2φ̇2 + 1

4
mglφ̇2 −3mgl, (s44)

from which one reads immediately fϕ = (2+p
2)ml2/8, gϕ = mgl/4 and

fφ = (2− p
2)ml2/8, gφ = mgl/4. Consequently,

ωϕ/φ =
√

gϕ/φ

fϕ/φ
=

√
(2± p

2)g
l

. (s45)

9. For the extra force f δ(x)= ax3, one has generally for the period,

T = 4
√

m
k

∫ π/2

0
dϕ

1√
1+ 1+sin2ϕ

2
σ

, σ= aX2

k
, (s46)

which could be expanded around σ= 0 to obtain,

T ≈ 2π
√

m
k

×
(
1− 3

8
σ+ 57

256
σ2 − 315

2048
σ3 + 30345

262144
σ4

)
. (s47)

On the other hand, by using keff ≈ k(1+s1σ+s2σ
2+s3σ

3+s4σ
4), one

has the expansion,

T ≈ 2π
√

m
k

×
[
1− 1

2
s1σ+

(
3
8

s2
1 −

1
2

s2

)
σ2

+
(
− 5

16
s3

1 +
3
4

s1s2 −
1
2

s3

)
σ3

+
(

35
128

s4
1 −

15
16

s2
1s2 +

3
4

s1s3 +
3
8

s2
2 −

1
2

s4

)
σ4

]
, (s48)

via T = 2π
√

m/keff. Comparing (s47) and (s48) gives

s1 = 3
4

, s2 =− 3
128

, s3 = 9
512

, s4 =− 1779
131072

. (s49)

Consequently, the effective Hooke’s constant to σ4 is given as

keff ≈ k×
(
1+ 3

4
σ− 3

128
σ2 + 9

512
σ3 − 1779

131072
σ4

)
. (s50)

10. Expanding the potential Ũ(χ) to order χ5 gives,

Ũ(χ)≈−
√

27
50

(1−θ)5/2χ+ 1
4

(1−θ)(1+3θ)χ2 +θ[(1−θ)/6]1/2χ3

+ 1
24

(3θ−2)χ4 − 1
120

√
6(1−θ)χ5 +Ũ0, (s51)

the last two terms of the above potential are the 4th-order and the
5th-order self-interactions for the χ field, respectively.

11. One of the most simple algorithms for finding β is via iteration,

β(i+1) = 1
θ

sinβ(i), (s52)

through an initial β(0). In order to find the first-order correction to
the solution B = p

6(1−θ), set β = B(1+∆), where ∆ could be found
through the equation θβ≈β−6−1β3 +120−1β5, the result is

∆≈ 3
4

1−θ

2+3θ
. (s53)

Thus
β≈ [6(1−θ)]1/2 ·

(
1+ 3

4
1−θ

2+3θ

)
. (s54)

See Fig. s4 for an example where β(0) = 0.1 and θ = 0.8.

0 10 20 30 40 50
iteration step i

0.0

0.5

1.0

1.5

β

β (i+1) = θ−1sinβ (i)√
6(1− θ)√
6(1− θ) · (1+∆)

Fig. s4: Solution of θβ= sinβ with its two approximations.

12. The period of the motion is given by

T =
√

2m
U0

×
∫ X2

X1

dx√
1−α1x3 −α2x2

, (s55)
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where α1 = (ν− 1)/ν2X3
1 and α2 = (ν2 −ν+ 1)/ν2X2

1 . The integrand
could be expanded as

1√
1−α1x3 −α2x2

≈
(
1−

(
x

X2

)2
)−1/2 [

1+ x2

2(X2 + x)X2
f

+
(4X2

2 +4X2x+3x2)x2

8(X2 + x)2X2
2

f 2
]

, (s56)

where f = ν− 1. The zeroth-order term gives T0 = √
2m/U0 × X2π,

and now n1 = 0 (since ν= 1). Thus U =U0x2/X2
1 =U0x2/X2

2 = 2−1kx2,
leading to the effective Hooke’s constant as k = 2U0/X2

2 . By putting
this k into the general formula T = 2π

p
m/k gives πX2

√
2m/U0. In

order to obtain the corrections, we set X1 = −X2/ν ≈ −X2(1− f + f 2)
and do the integration order by order, the result is given as,

T ≈πX2

√
2m
U0

×
(
1+ 5

p
2 f 1/2

8π
− f

2
+ 13

p
2 f 3/2

32π
+ 13 f 2

16

)
. (s57)

Here X2 should be determined by the potential U(X2) = U0 by con-
sidering X2 > 0 and the potential is expanded to f 2, thus this X2 has
the different meaning from that in the zeroth-order approximation.
In order to obtain the critical range for ν, let’s do as follows: Take the
derivative of U(x) with respect to x and set it to be zero, the resulted
value for x is denoted as X , then take the value of U(X ) and demand
it to be smaller than U0, the result for ν is consequently obtained as
ν≤ 2, i.e., 0≤ f ≤ 1. For example, taking ν= 1.5 (1.2) leads to the rela-
tive value of 91.1% (96.6%) from the above approximation, compared
with the exact period.

13. For ball 1, one has
∫ v1

u1
dv = ∫ t

0 a1dt where u1 is the initial velocity and
a1 is the acceleration of the first ball, i.e.,

a1 =− f0
m1

(
eβt −1

)
, t = t/tc. (s58)

Integrating the equation of motion gives the velocity

v1(t)= u1 +
f0

m1

[
t− tc

β

(
eβt −1

)]
. (s59)

By equaling v1(tc) to Vc = (m1u1 +m2u2)/(m1 +m2), one obtains the
critical time tc, as

tc = µUR
f0

β

eβ−β−1
, (s60)

where UR is the initial relative velocity between the two balls, i.e.,
UR = u1 −u2, and µ is their reduced mass. Similarly, the velocity of
the second ball is given by,

v2(t)= u2 −
f0

m2

[
t− tc

β

(
eβt −1

)]
. (s61)

Consequently, one obtains the relative velocity V (t) = UR = v1(t)−
v2(t),

V (t)=UR + f0
µ

[
t− tc

β

(
eβt −1

)]
(s62)

The compression distance is L(t)= ∫ t
0 V (t)dt, and thus

Lmax = L(tc)=
µU 2

R
f0

β

eβ−β−1

(
1− 1

β
+ 1

2
β

eβ−β−1

)
. (s63)

For small β¿ 1, the maximum distance is

Lmax ≈
µU 2

R
f0

(
4

3β
− 7

18
+ 1

45
β+ 1

405
β2

)
. (s64)

As β→ 0, the critical time tc ≈ 2µUR/ f0β becomes very large, indicat-
ing that the collision process is long. Similarly, the interaction force
under β→ 0 becomes F ≈− f0βt → 0, indicating that the model is un-

reasonable if β is very small. Naturally, we have the condition that
Lmax ≤ 2d, with d the diameter of the ball, i.e.,

µU 2
R

f0

β

eβ−β−1

(
1− 1

β
+ 1

2
β

eβ−β−1

)
≤ 2d, (s65)

this gives a self-consistent constrain on the β parameter if µ,UR and
f0 are known. For example, by keeping the lowest order term 4/3β,
we obtain the condition for β as

β≥βcr ≡
2µU 2

R
3d f0

. (s66)

Naturally, βcr ¿ 1, should be fulfilled, i.e., 2µU 2
R /3d f0 ¿ 1.

14. The most direct approach to the problem is calculating the derivative
of the equation Xβ+ X −1= 0 with respect to β, leading to

dX
dβ

=− Xβ log X
1+βXβ−1 , (s67)

and consequently one obtains dX /dβ(β= 1)= 4−1 log2. Similarly,

d2X
dβ2 = Xβ log2 X (βX2β−2 −1)

(1+βXβ−1)3
+ 2X2β−1 log X

(1+βXβ−1)2
, (s68)

and thus d2X /dβ2(β= 1)=−4−1 log2.

15. In the implicit method, we expand X (β)= X (1+ϵ) to order ϵ3 as,

X (1+ϵ)≈ a+bϵ+ cϵ2 +dϵ3, (s69)

where
a = X (1), b = X ′(1), c = 1

2
X ′′(1), d = 1

6
X ′′′(1). (s70)

The expansion of Xβ(β) = X1+ϵ(1+ ϵ) is thus Xβ(β) ≈ (a+ bϵ+ cϵ2 +
dϵ3)1+ϵ, or

Xβ(β)≈a+ (a loga+b)ϵ+
(

1
2

a log2 a+b loga+b+ c
)
ϵ2

+
[
d+ 1

6a

(
a2 log3 a+3ab log2 a+6ab loga

+6ac loga+6ac+6ad+3b2
)]
ϵ3, (s71)

where the formula a1+ϵ ≈ a[1+ ϵ loga+2−1ϵ2 log2 a+6−1ϵ3 log3 a] is
used. By comparing both sides of the equation Xβ(β)+ X (β) = 1 or
X1+ϵ(1+ϵ)+ X (1+ϵ)= 1, one obtains a = X (1)= 2−1, and

X ′(1)= b = 1
4

log2≈ 0.1733, (s72)

X ′′(1)= 2c =−1
4

log2≈−0.1733, (s73)

X ′′′(1)= 6d = 3
8

log2+ 3
16

log2 2− 1
8

log3 2≈ 0.3084. (s74)

16. The expressions for Esym(ρ) and L(ρ) are given as*

Esym(ρ)=
k2

F
6M

+ kF
6

∂U0
∂|k|

∣∣∣∣|k|=kF

+ 1
2

Usym(ρ,kF), (s75)

L(ρ)=
k2

F
3M

+
[

k2
F
6

∂2U0
∂|k|2 + kF

6
∂U0
∂|k|

]
|k|=kF

+ kF
∂Usym

∂|k|
∣∣∣∣|k|=kF

+ 3
2

Usym(ρ,kF)+3Usym,2(ρ,kF). (s76)

*See, e.g., R. Chen et al., Single-nucleon potential decomposition of the nuclear
symmetry energy, Phys. Rev. C 85, 024305 (2012), section II, for some details. The
method is based on the Hugenholtz–Van Hove theorem.
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