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In this lecture, several fundamental concepts of machine learning are intro-
duced via the classical curve fitting problem, e.g., the learning model, parameter
space, regularization term, over-fitting, training and testing errors, loss function,
normal equation, model complexity, and the trade-off between bias and variance
of the learning model. Moreover, the very basic ideas of Bayesian calculation are
given using examples, like the prior, the likelihood function and the posterior for
the parameter(s) to be estimated. The reduction of the variance of the parame-
ter(s) by generation of data samples is also discussed. The lecture is organized as
follows: In section I we introduce the basic concepts of model fitting using the lin-
ear regression as the example. Sections II and III generate the linear regression
to the general nonlinear situation, where a few fundamental concepts of machine
learning are given like the trade-off between bias and variance. Section IV is de-
voted to the regularization method, which could effectively handle the over-fitting
problem. we discuss in section V several advanced theoretical issues related to
the parameter estimation, such as the design matrix, the basis function, the ge-
ometrical meaning of the least squares, and the generalized learning model with
data weights. Sections VI and VII give the overall picture of the Bayesian cal-
culation and the maximum likelihood estimation and in section VIII we use the
method to revisit the linear regression. Section IX discusses the variance reduc-
tion during the Bayesian learning process as data samples generates. Section X is
devoted to the discussion on the correlations between/among the learning param-
eters together with the error-bar estimation problem. In sections XI and XII the
concepts/techniques of/from the central limit theorem and the law of large num-
bers are briefly introduced. Finally sections XIII and XIV briefly introduce the
concept of singular value decomposition from the viewpoints of linear equations
and best-fit approximations. The role play by examples is emphasized throughout.

I. START: LINEAR FITTING MODEL

Assume that one has m data points (x(i), y(i)) with i = 1 ∼ m, here the
physical or the realistic relation between x(i) and y(i) is assumed to be
linear, e.g., the relation between the velocity v and the acceleration a
as v = at. Since there exists measurement errors, the measured or the
experimental relation between x(i) and y(i) is not exactly linear. In this
case, one can still use linear regression to obtain the model parameters
or the learning parameters from the noisy data.

learning model f~θ(x) = ax + b

noisy measurements︸

︷︷

︸

(x(i), y(i))

ǫ(i) = f~θ(x
(i))− y(i)

Fig. 1: Sketch of the linear regression problem.

To this end, we as-
sume that the model
is linear and denote
it by f

θ⃗
(x) = ax + b

with a and b two pa-
rameters to be deter-
mined by the linear
regression, the pa-
rameters are collec-
tively denoted by θ⃗ =
(a,b). In order to ob-
tain the model parameter θ⃗, one needs to minimize the error between the
model prediction for the data x(i), i.e., f

θ⃗
(x(i)), and the measurement y(i).

One of the frequently-used error is the squared loss, i.e., ( f
θ⃗
(x(i))− y(i))2,

here ϵ(i) = f
θ⃗
(x(i))−y(i) is called the algebraic distance between the model

prediction and the measurement (which could take either positive or neg-
ative values), see Fig. 1 for the sketch of the algebraic distance. The total
loss is the sum of the error of all samples,

J (⃗θ)= 1
2

m∑
i=1

[
f
θ⃗
(x(i))− y(i)

]2
. (1.1)

The factor 1/2 is irrelevant here. It should be pointed out that J is a
function of θ⃗ or equivalently of a and b, instead of x(i) or y(i).

In order to obtain the parameters a and b, one needs to minimize the
function J. Since J is a convex function (like the parabolic function x2),
the minimization of J is reduced to ∂J/∂a = 0 and ∂J/∂b = 0, these two

equations determine the optimized parameters a∗ and b∗. By expanding
the loss J (⃗θ), we have

J(θ⃗)=m
2

[
〈x2〉a2 +b2 +〈y2〉+2〈x〉ab−2〈xy〉a−2〈y〉b

]
, (1.2)

where the data sample averages are defined by,

〈x〉 = 1
m

m∑
i=1

x(i), 〈y〉 = 1
m

m∑
i=1

y(i), (1.3)

〈x2〉 = 1
m

m∑
i=1

x(i),2, 〈y2〉 = 1
m

m∑
i=1

y(i),2, 〈xy〉 = 1
m

m∑
i=1

x(i) y(i), (1.4)

which could be calculated once the measurement is available. After some
straightforward calculations, one obtains

a∗ = 〈x〉〈y〉−〈xy〉
〈x〉2 −〈x2〉 , b∗ = 〈x〉〈xy〉−〈x2〉〈y〉

〈x〉2 −〈x2〉 . (1.5)

In fact, if y∼ x, the numerator of b∗ ∼ 〈x〉〈x2〉−〈x2〉〈x〉 = 0.
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Fig. 2: Simulated samples, fitting line a∗x+
b∗ and the physical model, the number of
samples is m = 50,aphys = 3,bphys = 0.

The coefficients a∗ could be
written as a∗ = cov[x, y]/var[x],
and consequently the optimal
prediction for the output is

y∗ =E[y]+ cov[x, y]
var[x]

[x−E[x]] .

(1.6)

The mean square error (MSE)
of observation is define as ∆∗ =
E[y− y∗]2 = var[y][1−ρ2[x, y]],
where ρ[x, y] is the correlation
between x and y. Consequently,
the larger (in absolute value)
the correlation coefficient the
smaller the MSE of observa-
tion. In particular if |ρ(x, y)| = 1
then ∆∗ = 0, on the other hand
if x’s and y’s are uncorrelated,
∆∗ = var[y] and y∗ = E[y]. We
simulate the model and prepare
the data as follows: Assume that the physical model is given by y = 3x,
i.e., ideally aphys = 3 and bphys = 0. The data is generated through
y(i) = a′x(i) with a′ = aphys ±ϕ where ϕ denotes the noise, e.g., ϕ is
a zero-mean random variable with Gaussian distribution ϕ ∼ N (0,σ2),
and consequently a′ = N (aphys,σ2) = N (3,σ2). In our calculations, we
fix σ2 = 0.3. In addition, the data sample is generated by using this a′
and the x(i) uniformly distributed within 0 and 5, i.e., x(i) ∼Unif[0,5]. In
Fig. 2 we show the simulated samples (m = 50), the fitting line a∗x+ b∗
and the physical model used by randomly running the code. It is clearly
demonstrated that the “learned model a∗x+b∗” has some deviation from
the physical model (here 3x). Specifically, b∗ is not exactly equal to zero.

EXERCISE 1: Define error of the point (x(i), y(i)) to the line y= ax+b
as d(i)

⊥ (a,b) = |ax(i) +b− y(i)|/
√

a2 +1 or d(i)
x (a,b) = |ax(i) + b − y(i)|/a,

the loss function could be obtained as J⊥(a,b) = 2−1 ∑m
i=1 d(i),2

⊥ (a,b) or

Jx(a,b) = 2−1 ∑m
i=1 d(i),2

x (a,b). Derive the equations for determining the
parameters a and b. If a is large, d⊥ ≈ dx. Numerically solve the opti-
mization problems.

We can independently run the simulation for k times and obtain the
a∗ and b∗ for k times. Consequently, the k-average of the a∗ and b∗ are,

a∗(k,m)≡ 1
k

k∑
j=1

a∗,( j), b∗(k,m)≡ 1
k

k∑
j=1

b∗,( j). (1.7)

The corresponding k-dependence of the a∗ and b∗ is shown in Fig. 3
where m = 10 is fixed for each simulation. As the k increases the k-
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Fig. 3: k-dependence of a∗(k,m) and b∗(k,m), m = 10 is fixed.
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Fig. 4: k-dependence of SEM(a∗,k,m) and SEM(b∗,k,m), m = 10 is fixed.

average of the learning parameters eventually approach to the physical
values. Similarly, by defining the standard error in the means (SEM),

SEM( f ∗,k,m)=
√√√√ 1

k
1

k−1

k∑
j=1

(
f ∗,( j) − f ∗

)2
, f = a,b, (1.8)

one could study, e.g., the large-k behavior of the overall errors encapsu-
lated in the learning parameters. We show in Fig. 4 the k-dependence of
the SEM for a∗ and b∗ while fixing m = 10. From the figure it is clearly
indicated that in the log-log plot the overall tendency is quasi-linear.

II. NONLINEAR GENERALIZATION: CONCEPTS

Fig. 5: Sketch of the nonlinear fitting problem.

The linear model f
θ⃗
(x)=

ax + b studied in the last
section is simple and con-
venient to implement, how-
ever it is sometime too sim-
ple to capture other fea-
tures encapsulated in the
data, e.g., the irregular-
ity and/or the nonlinearity,
see Fig. 5 for an example.
It is certain that the lin-
ear learning model could
hardly work for these situ-
ations, where one needs to
develop new learning tech-
niques encapsulating the
nonlinearity of the features. A few basic concepts are necessarily needed
to be introduced. There is a physical model, denoted by fphys(x) (gen-
erally the input data x has the vector nature), which is unknown in ad-
vance and maybe even very complicated. Although the physical model

fphys(x) is unknown, there exist relevant data generated by the model,
and the data always has measurement noise (also unknown). We denote
the data point as (x(i), y(i)), and since there exists noise in the output
y(i) generally y(i) , fphys(x(i)). For simplicity here we assume the out-
put is a scalar. Besides the physical model, a learning model denoted by
fw(x) is often introduced with w a set of parameters characterizing the
learning model. Based on a fixed learning model, one could make a pre-
diction on each input data x(i) to obtain fw(x(i)). The learning model is
an effective approximation of the physical model since the latter is gener-
ally very complicated. Generally, the prediction fw(x(i)) will be different
from the measured output data y(i), and the basic task in machine learn-
ing and/or data analysis/mining is to minimize the difference between
the measurement and the prediction. Consequently, an error (cost/loss)
function emerges, which characterizes the above difference.

A very frequently-used error function is given by

J(w)= 1
2

m∑
i=1

[
fw(x(i))− y(i)

]2
, (2.1)

i.e., the sum of the difference between the prediction ( fw(x(i))) and the
measurement (y(i)), which has already been used in the linear learning
model, see (1.1). This type of optimization is called the least-squares
(LS). As similar as in the linear fitting problem, J(w) is function of the
learning parameter w, and not a function of the measurements (x(i), y(i)).
The next task is to minimize the error function J(w), and since generally
J(w) is a convex function of w, the minimization of it is reduced to the
condition ∂J(w)/∂w= 0, or equivalently,

∂J(w)/∂w j = 0, j = 0,1,2, · · · ,n, (2.2)

where one assumes that there are totally n+1 parameters namely w0 to
wn. It is necessary to point out that we use two letters “n” and “m” to
represent the number of the learning parameters and the number of data
points, respectively. Specifically, if the input data has the scalar nature
(i.e., x instead of x), a very general learning model in machine learning
is the polynomial of order n, i.e.,

fw(x)= w0 +w1x+w2x2 +·· ·+wnxn =
n∑

j=0
w j x

j , (2.3)

here the learning parameter consists of n + 1 scalars, i.e., w0 to wn.
One uses the measured data points (x(i), y(i)) to study these parameters,
which is then called “learning from data”. Although fw(x) is nonlinear in
x, it is still linear in the parameters w j . In this sense, we also call fw(x)
the linear model. The second order derivative of the loss function with
respect to w j is similarly given

∂2J
∂w2

j
= ∂

∂w j

∂

∂w j

[
1
2

m∑
i=1

[
fw(x(i))− y(i)

]2
]

=
m∑

i=1

(
∂

∂w j
fw(x(i))

)2

+
m∑

i=1

(
fw(x(i))− y(i)

) ∂2

∂w2
j

fw(x(i)). (2.4)

If the learning model is linear then the second term is zero at the optimal
parameter, leading to

∂2J
∂w2

j
=

m∑
i=1

(
∂

∂w j
fw(x(i))

)2

, (2.5)

which is always positive. Even the learning model is nonlinear, we can
still prove that ∂2J/∂w2

j > 0, using the normal equation given later.

III. BIAS-VARIANCE DECOMPOSITION: CALCULATIONS

We solve the nonlinear curve fitting problem in details to demonstrate
the important features of machine learning, i.e., how could one “learn
from data”, and what to learn? According to Eq. (2.2), one can obtain
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Fig. 6: Learning processes with different n.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

w∗
0 0.19 0.79 0.81 0.23 −0.00 0.10 0.08 0.08 0.08 0.08

w∗
1 ; −1.21 −1.32 8.11 16.93 7.42 13.99 16.69 −9.48 145.11

w∗
2 ; ; 0.11 −24.74 −69.30 10.00 −71.10 −115.61 412.07 −3158.52

w∗
3 ; ; ; 16.57 88.03 −136.10 212.92 476.91 −3503.21 28658.38

w∗
4 ; ; ; ; −35.73 221.18 −453.31 −1199.76 13815.03 −137275.68

w∗
5 ; ; ; ; ; −102.76 497.20 1585.76 −29673.59 381953.29

w∗
6 ; ; ; ; ; ; −199.99 −989.95 35479.27 −638534.33

w∗
7 ; ; ; ; ; ; ; 225.70 −22102.39 631648.54

w∗
8 ; ; ; ; ; ; ; ; 5582.02 −340299.59

w∗
9 ; ; ; ; ; ; ; ; ; 76862.54

Tab. 1: Optimal parameters w∗
j , j = 0∼ n in different learning models.

the equations for determining the model parameters w0,w1,w2, · · · ,wn.
Specifically, we have

∂J
∂w j

=
m∑

i=1

(
fw(x(i))− y(i)

) ∂

∂w j
fw(x(i))

=
m∑

i=1
fw(x(i))x(i), j −

m∑
i=1

y(i)x(i), j =
m∑

i=1

n∑
j′=0

w j′ x
(i), j′+ j −

m∑
i=1

y(i)x(i), j

=
n∑

j′=0
w j′

m∑
i=1

x(i), j′+ j −
m∑

i=1
y(i)x(i), j = m

[
n∑

j′=0
w j′ 〈x j′+ j〉−〈x j y〉

]
,

(3.1)

and the relevant equation is given by setting it to be zero, i.e.,

n∑
j′=0

w j′ 〈x j′+ j〉 = 〈x j y〉, j = 0∼ n. (3.2)

Consequently, we have
〈1〉w0 +〈x〉w1 +〈x2〉w2 +·· ·+〈xn〉wn = 〈y〉,
〈x〉w0 +〈x2〉w1 +〈x3〉w2 +·· ·+〈xn+1〉wn = 〈xy〉,
...,
〈xn〉w0 +〈xn+1〉w1 +〈xn+2〉w2 +·· ·+〈x2n〉wn = 〈xn y〉,

(3.3)

where 〈1〉 = m−1 ∑m
i=1 1= 1, and

〈xk〉 = 1
m

m∑
i=1

x(i),k = 1
m

(
x(1),k + x(2),k +·· ·+ x(m),k

)
, (3.4)

〈xk y〉 = 1
m

m∑
i=1

x(i),k y(i) = 1
m

(
x(1),k y(1) + x(2),k y(2) +·· ·+ x(m),k y(m)

)
.

(3.5)

As a special case, consider n = 1, i.e., for the linear fitting problem,
Eq. (3.3) becomes 〈1〉w0 +〈x〉w1 = 〈y〉 and 〈x〉w0 +〈x2〉w1 = 〈xy〉. In addi-

tion, Eq. (3.3) could be rewritten in the form, Fw=G, where

F=


〈1〉 〈x〉 · · · 〈xn〉
〈x〉 〈x2〉 · · · 〈xn+1〉
...

...
. . .

...
〈xn〉 〈xn+1〉 · · · 〈x2n〉

 , w=


w0
w1
...

wn

 , G=


〈y〉
〈xy〉

...
〈xn y〉

 . (3.6)

Note that the (n+1)× (n+1) matrix F is symmetric, namely Fi j = F ji .
The symmetry properties of F is useful for calculating its inverse.

EXERCISE 2: Derive the analytical expressions for w j ’s in the case
of n = 2 and n = 3, write down the explicit form of F−1.

EXERCISE 3: Prove F could be written as Φ⃗TΦ⃗ where the element of
the matrix Φ⃗ is ϕ ji =ϕ j(x(i)) with j = 0∼ n, i = 1∼ m, see (5.4).

We similarly prepare the data to be used in the simulation. Here the
physical model is adopted as fphys(x) = sin(2πx) with 0 ≤ x ≤ 1, and we
generate total 10 data points uniformly distributed within this range,
i.e., x(i) = i/9, i = 0,1,2, · · · ,9, or, x(i) = 0,1/9,2/9, · · · ,8/9,1. The output
data y(i) is obtained from the physical model by including a noise, i.e.,
y(i) = sin(2πx(i))+ a(i), here a(i) ∼ Unif[−ℓ,ℓ] is a uniformly distributed
random number. We adopt ℓ = 0.8 for the simulation. After solving the
equation Fw=G, one obtains the parameter w∗.

Results for a series of learning model fw∗ (x) with different param-
eter n are shown in Fig. 6. Let’s discuss starting with the case “n =
0”, now the learning model is fw(x) = w0 and in this case the opti-
mized parameter w∗

0 is just the mean of the output y(i), namely w∗
0 =

(y(1) + y(2) +·· ·+ y(10))/10. Next, we have re-obtained the linear fitting
result if n = 1. There are several novel and important features shown
in Fig. 6. Firstly, at small n the learning curve (blue line) predicts bad
for the data points, and the prediction becomes better and better when n
increases. In the limit situation of n = 9, the prediction can perform per-
fectly on the data points (there is no difference between the measurement
y(i) and the prediction fw(x(i)) at these points). However, the learning
curve becomes stranger at larger n while it is much smoother at smaller
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n. The smoothness and the strangeness characterize two important as-
pects of the learning model: When the learning curve is smoother we call
it has a smaller variance, while when the curve is closer to the measure-
ments we call it has a smaller bias. Thus, when n is small, the learning
model has a small variance and a large bias and the learning model has
a large variance and a small bias when n is large. This phenomenon
is sometimes called the “no-free-lunch theorem”,1 in the sense that one
could not obtain a learning model with both small variance and bias. It
is a very general feature of all the learning problems in data analysis.
The “no-free-lunch theorem” is also called the bias-variance trade-off or
the bias-variance decomposition.

The learning model with large n is very complicated and has a very
strong power of fitting data but limited power of predicting new data. We
thus often call n the complexity of the model. In our example, n ≈ 3 ∼ 6,
is reasonable. In Tab. 1, the values of the optimal w∗

j are shown in mod-
els with different n. One of the important features is that as the model
complexity n increases the magnitude of w∗

j ’s eventually increase. It is
very dangerous in the sense that in order to finally obtain a naturally
prediction on the output the large terms w∗

j x j are added, and this phe-
nomenon is called fine-tuning. One of the popular to avoid the fine-tuning
is through the regularization term introduced into the model, see discus-
sion given in section IV.

low bias, low variance low bias, high variance

high bias, low variance high bias, high variance

Fig. 7: Patterns of bias and variance.

The bias-variance decompo-
sition is a general result in data
fitting problems, independent
of the learning model adopted,
see Fig. 7 for four popular pat-
terns of bias and variance.
If the physical model for the
quantity x is as before denoted
as fphys(x), and the output gen-
erated by x is y = fphys(x)+ a,
where a is a noise with mean
E[a] = 0 and variance var[a].
In addition, the learning model
is denoted by f̂ (x) without in-
troducing the learning param-
eter w. For each testing data
x, the output given by the
learning model is consequently
f̂ (x). After some straightfor-
ward derivations we could obtain the mean of the square of the dif-
ference between the physical model and the learning prediction ∆ =
E[( fphys(x)+ a− f̂ (x))2], which characterizes the goodness of the learn-
ing model,

∆=E
[(

fphys(x)+a− f̂ (x)
)2]

=E
[

f 2
phys(x)+a2 + f̂ 2(x)−2 fphys(x) f̂ (x)

]
=E

[
a2

]
+E

[
f 2
phys(x)

]
+E

[
f̂ 2(x)

]
−2E

[
fphys(x) f̂ (x)

]
=var[a]+ [

E
[
f̂ (x)

]− fphys(x)
]2 +E

[[
f̂ (x)−E

[
f̂ (x)

]]2]
, (3.7)

the meaning of each term is clear:

(a) The noise var[a] can’t be reduced once the physical model is fixed.

(b) E[ f̂ (x)]− fphys(x) is the bias between the learning model f̂ (charac-
terized by its mean E[ f̂ (x)]) and the physical model fphys.

(c) E[[ f̂ (x)−E[ f̂ (x)]]2] is the variance of the learning model f̂ on the
testing sample.

thus

E
[(

fphys(x)+a− f̂ (x)
)2]

=var[a]+ [
bias of f̂ (x)

]2 +variance of f̂ (x).

(3.8)

1D. Wolpert and W. Macready, No Free Lunch Theorems for Optimization, IEEE
Transactions on Evolutionary Computation 1, 67 (1997).
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Fig. 8: Sketch of the bias-variance decomposition.

The relation (3.8) is often called the bias-variance decomposition of the
learning process, which partially explains that if the bias of the learning
is small then the variance is correspondingly large and vice versa, since
the noise var[a] is generally a constant once the physical model is fixed.
See Fig. 8 for the sketch of the bias-variance decomposition of the learn-
ing model. One can see that as the model complexity increases the train-
ing error generally decreases, however the testing error first decreases
and then increases once again.2
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Fig. 9: Training error etrain, testing error
etest and the integration error DE.

In order to characterize the
bias-variance decomposition in a
more qualitatively manner, we
define two errors both based on
Eq. (2.1). We already have m =
10 training data samples, we de-
fine the training error per data
sample etrain as

metrain ≡
1
2

m∑
i=1

[
fw∗ (x(i))− y(i)

]2
, (3.9)

where the optimized w∗ is used.
For n = 9, the etrain will be zero
since the learning model can ex-
actly pass through all the train-
ing data points. Besides these al-
ready existed training data, one
could randomly generate another
m′ data points (different from
the training data) according to fphys(x(i′))+a(i′) where both x(i′) and a(i′)

are random numbers, and define the testing error per data sample as

etest ≡
1

m′

[
1
2

m′∑
i=1

[
fw∗ (x(i′))− y(i′)

]2
]

. (3.10)

It is reasonable to expect that when n = 9 the testing error would be
larger than that in the case n = 3.

Selecting a model with a certain n is called model selection. A very
simple scheme to select a reasonable n is to select the learning model
with a smallest training error, a smallest testing error, or a total error

2In fact, there is no prior that the total error should be decomposed into the
variance and the bias. A natural question is that could the bias and the variance
be small simultaneously? Problems like these are at the center of modern deep
learning theory. For example, in some model studies, the “double descent” for the
prediction error is found, indicating that the testing error could be reduced even to
be very small in the over-parametrized region. See, e.g., M. Belkin et al., Reconcil-
ing Modern Machine Learning Practice and the Classical Biasvariance Trade-off,
PNAS, 116, 15849 (2019). Deep understanding on the current neural networks is
an important and exciting problem, we have no attempts to review the status on
this issue, the following papers, e.g., introduce some relevant improvements, H.W.
Lin, M. Tegmark, and D. Rolnick, Why Does Deep and Cheap LearningWork So
Well?, J. Stat. Phys. 168, 1223 (2017), here the idea of effective field theories was
applied; C. Beny, Deep learning and the Renormalization Group, arXiv:1301.3124
(2013), in this work the renormalization group technique was used.

— 4 —



defined as the weighted sum of the training and the testing error, i.e.,
etotal = hetrain + (1−h)etest, where 0 ≤ h ≤ 1. Taking h = 1/2 means that
the training error and the testing error have the same weights, otherwise
they have different weights. Another scheme characterizing the learning
model on the prediction power is to calculate the average (overall) devi-
ation between the physical model fphys(x) and the learning model fw(x),
for our example, we have the following integration error,

DE=
∫ 1

0

∣∣ fphys(x)− fw∗ (x)
∣∣dx. (3.11)

In Fig. 9 the above three errors are shown as functions of the model com-
plexity where m′ = 5 is adopted. For the current learning problem we
find that n ≈ 3∼ 6 is a reasonable choice.

IV. REGULARIZATION

0.0 0.5 1.0
x

−2

−1

0

1

2
λ=10−12

n=9

Fig. 10: Effects of the regulariza-
tion on the polynomial regression.

As discussed above and shown in
Fig. 9 if the model complexity n is se-
lected reasonably, e.g., n = 3 or n = 4,
the learning curve has both low train-
ing and testing errors. On the other
hand, if n is very small, e.g., n = 0, the
learning model fw∗ (x) = w∗

0 has both
large training and testing errors. If n is
too large like n = 9 the learning model
has zero training error. However the
testing error is now extremely large,
indicating that the model has very poor
prediction power although it could pass
through the training data perfectly. In
addition, in the small n case (e.g., n = 0
or n = 1), the learning model is very
poor in grasping the training data, and
we call the situation is under-fitting. On the other hand, in the large n
case (e.g., n = 9), the learning model is very strong in grasping the train-
ing data (but very poor in predicting new samples), and we say the situa-
tion is over-fitting. Either under-fitting or over-fitting is bad. The overall
performance of the training error and the testing error is characterized
by the prediction error.

We introduce the regularization method to deal with the over-fitting
problem. Besides the original loss function 2−1 ∑m

i=1[ fw(x(i))− y(i)]2, we
introduce an extra term λg(w) into it, i.e.,

J(w)= 1
2

m∑
i=1

[
fw(x(i))− y(i)

]2 +λg(w), (4.1)

where λ > 0 is a parameter put by hand and g(w) is a function of the
learning parameter w, which is also positive. We call λg(w) the regular-
ization term to the loss function J(w). There are many different forms of
the regularization term and different form has different realistic mean-
ing. Here we adopt the following regularization term,

λg(w)= 1
2
λwTw= 1

2
λ

(
w2

0 +w2
1 +·· ·+w2

n

)
, (4.2)

which is called the ℓ-2 regularization term. Another important regular-
ization term is the ℓ-1 form, defined as λ‖w‖1. The ℓ-1 regularization is
often used to guarantee the sparsity of the learning model.

The equation determining the parameter w0,w1, · · · ,wn in the pres-
ence of the regularization terms could be derived similarly as

〈1〉 〈x〉 · · · 〈xn〉
〈x〉 〈x2〉 · · · 〈xn+1〉
...

...
. . .

...
〈xn〉 〈xn+1〉 · · · 〈x2n〉




w0
w1
...

wn

=


〈y〉
〈xy〉

...
〈xn y〉

−λ


w0
w1
...

wn

 , (4.3)

or (F+λ1)w=G, where 1 is the (n+1)× (n+1) unit matrix.

In Fig. 10 the effects of the regularization term with λ = 10−12 are
shown based on the 9th-order polynomial learning model. It is found
that a tiny λ= 10−12 essentially makes the overall behavior of the learn-
ing curve more regular and smoother, and one can expect as λ increases
the curve becomes much smoother. It should be pointed out once again
that the regularization term λg(w) is not encapsulated in the data points
themselves, instead it is put by hand. In this sense the λ-term more
or less characterizes people’s belief in the data, i.e., if λ is small the
original data points are treated more importantly, and on the other
hand, if λ is large it means that one does not believe the original data
points. A natural question is what will happen in this large λ limit.
For example, by taking λ = 1 the w∗

j ’s in the n = 9 model are found
to be 0.44,−0.28,−0.31,−0.20,−0.10,−0.02,0.03,0.06,0.08 and 0.09, re-
spectively. The case λ =∞ corresponds to the situation that one totally
un-believe the original data points, since now

λg(w)À 1
2

m∑
i=1

[
fw(x(i))− y(i)

]2
, (4.4)

and the learning model is approximately reduced to be fw(x) = λg(w)
and if g(w) = wTw then the optimal w∗ is essentially 0 without doubt.
One can easily find that as logλ→−∞, i.e., the limit without using the
regularization term, the training loss tends to zero since when n = 9 the
learning model could perfectly pass through all the data. In the mean-
while the testing loss is fixed at a nonzero constant. Under the opposite
limit named logλ→∞, the learning model naturally becomes zero, and
consequently either the training loss or the testing loss is fixed at con-
stants which are determined by the simulated data points used.

V. NORMAL EQUATION

Let’s discuss the polynomial learning model in some more details. In
our polynomial learning model, fw(x) = w0 + w1x + w2x2 + ·· · + wnxn,
which could be rewritten in the form3

fw(x)=wTϕ⃗(x)= ϕ⃗T(x)w (5.1)

with w = (w0,w1,w2, · · · ,wn)T, ϕ⃗(x) = (1, x, x2, · · · , xn)T, i.e., w ∈
R(n+1)×1 ≡Rn+1 is a column vector (column vector is thin and tall) and its
transpose wT ∈R1×(n+1) is a row vector (row vector is fat and short). The
jth component of the vector ϕ⃗ is x j with j = 0 ∼ n. Denoting ϕ j(x) = x j ,
then the function ϕ⃗(x) could be written as

ϕ⃗(x)= (
ϕ0(x),ϕ1(x), · · · ,ϕn(x)

)T , ϕ j(x)= x j , j = 0∼ n. (5.2)

In the polynomial learning model, each component ϕ j(x) takes the form
x j . However, in more general situations, the component ϕ j(x) is free to
take other forms, e.g., ϕ j(x) = sin( jtx) with t a constant. We call the
functions ϕ j(x)’s the basis functions.

Adopting the basis function representation, the loss function without
regularization term is given by

J(w)= 1
2

m∑
i=1

[
fw(x(i))− y(i)

]2
, fw(x(i))=wTϕ⃗(x(i)). (5.3)

By introducing the matrix Φ⃗ ∈Rm×(n+1) as follows,

Φ⃗=


1 ϕ1(x(1)) · · · ϕn(x(1))
1 ϕ1(x(2)) · · · ϕn(x(2))
...

...
. . .

...
1 ϕ1(x(m)) · · · ϕn(x(m))

 , (5.4)

3One has aTb = bTa since this quantity is a scalar, i.e.,
∑d

i=1 aibi with d the
dimension of the vector a or b.
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and y= (y(1), y(2), · · · , y(m))T ∈Rm, we can rewrite the loss function as,

J(w)= 1
2

(
Φ⃗w−y

)T (
Φ⃗w−y

)
, (5.5)

We call the matrix Φ⃗ the design matrix with its component given by
ϕ j(x(i)). The derivative of J(w) with respect to w is ∂J(w)/∂w= Φ⃗TΦ⃗w−
Φ⃗Ty, then taking ∂J(w)/∂w to be zero gives the normal equation,

w∗ =
(
Φ⃗TΦ⃗

)−1
Φ⃗Ty. (5.6)

After the regularization term 2−1λwTw is included into the loss function
J(w), the optimized solution is changed to be w∗ = (Φ⃗TΦ⃗+λ1)−1Φ⃗Ty.

EXERCISE 4: Prove the identities, ∂aTb/∂a = b and ∂aTMa/∂a =
aT(M+MT), where a,b ∈Rd×1 ≡Rd ,M ∈Rd×d .

It should be point out that the regularization term introduced into
the least-squares plays an important role in situations where the matrix
Φ⃗TΦ⃗ is singular, i.e., det(Φ⃗TΦ⃗) = 0. Choosing a large λ indicates that
the original data information is put at the secondary position. Let’s give
more analysis on the normal equation. Assume that we want to find the
minimum of the quadratic objective function K(w) = 2−1wTΦ⃗w−yTw,
the gradient of K(w) is given by Φ⃗w−y. In order to find the optimal
w∗ one naturally needs to solve this equation, i.e., Φ⃗w = y. However
due to some reasons, e.g., there exist more equations than unknowns
(the number of rows of Φ⃗ is larger than that of columns), this equation
may have no solutions, i.e., the system is over-determined. It is often
the origin of the situation det(Φ⃗TΦ⃗) = 0 aforementioned. Hence we can
not expect to a solution of Φ⃗w = y and may instead try to change the
problem to solving the least-squares problem, minw(Φ⃗w−y)T(Φ⃗w−y).
This objective function is just the J(w), and the solution is given by that
of the normal equation.

Clarifying the connection between the normal equation and the loss
function K(w) is useful for understanding the important role played by
the design matrix. Since ϕ0 = 1, without loosing generality the design
matrix could be written as

Φ⃗∼


ϕ1(x(1)) ϕ2(x(1)) · · · ϕn(x(1))
ϕ1(x(2)) ϕ2(x(2)) · · · ϕn(x(2))

...
...

. . .
...

ϕ1(x(m)) ϕ2(x(m)) · · · ϕn(x(m))

 , (5.7)

where each column forms a vector φ⃗ j = (ϕ j(x(1)), · · · ,ϕ j(x(m)))T ∈Rm with
j = 1 ∼ n (the difference between n and n+1 is essentially irrelevant for
the following discussion). On the other hand, each row ϕ⃗(x(i)) has dimen-
sion n. Under the assumption that the model complexity n is smaller
than the data number m, the n-vector ϕ⃗(x(i)) may span a sub-space S
with dimension m. Denote t as an m-vector with its ith component
given by fw(x(i)), i.e., t = ( fw(x(1)), · · · , fw(x(m)))T. Since the vector t
is some linear combination of the basis φ⃗ j , it could be at any point in
the n-dimensional space. Under these considerations, the loss function
J(w) ∼ ∑m

i=1[y(i) − fw(x(i))]2 = (y(1) − t1)2 + ·· · + (y(m) − tm)2 is the Eu-
clidean distance between y and t. The least-squares searching for w is
consequently to find a vector t in the sub-space S in order to make the
distance between t and y be smallest.

It is useful to notice that the dimension of the matrix Φ⃗TΦ⃗ is n+1,
which may possibly be far smaller than the data number m, making the
solving of the normal equation possible. It of course should depend on
the algorithms like the gradient descent to search the optimal parame-
ter if the model complexity n is a very large number which hinders the
direct inverse of the matrix Φ⃗TΦ⃗. In this case, one just uses the informa-
tion of the gradient of J(w), namely, w ← w− ϵ(Φ⃗TΦ⃗w− Φ⃗Ty), to update
the learning parameter w. Here ϵ is the learning rate or the step size
of the gradient descent search. As we study the learning problems in
this lecture based on the polynomial model or the basis function has the
form of x j , based on which there exists the closed form for the optimal
parameter, i.e., the one given by the normal equation.

In more general situations in which the basis function takes other
forms, there exists no closed form for the learning parameter. In these
situations one should necessary use the optimization algorithms to do
the search. The search is composed of the following consecutive steps:
(a) Firstly initialize the learning parameter w; (b) Randomly select a
data sample (x(i), y(i)); (c) Update the learning parameter according to
w ← w− ϵi∇J(i)(w), where the ∇J(i)(w) is the gradient associated with
the selected data sample, i.e., ∇J(i)(w) = −ϕ⃗(x(i))(y(i) − fw(x(i))) where
the n-vector ϕ⃗ is constructed from the row of the design matrix; and (d)
recursively do the search to the fulfill termination condition. Here one
selects the data sample in a stochastic manner in order to reduce the cal-
culation task in the gradient of the loss function at each step. We call
this gradient descent the stochastic gradient descent (SGD), which plays
a central role in modern large-scale optimization problems.

VI. BAYESIAN CONSIDERATION: EXAMPLES

We assume there are two random events denoted by A and B. De-
noting P(A|B) the probability of A under the condition that the random
event B occurs, one calls P(A|B) the conditional probability of A under
B (the conditional probability density could be defined in a similar man-
ner). Consequently, the joint probability of A and B, i.e., the random
event A and B occur simultaneously, is obtained via

P(A,B)= P(A|B)P(B). (6.1)

It is obvious that the joint probability could be obtained as P(A,B) =
P(B|A)P(A), i.e., P(A,B) is the product of P(B|A) and P(A) with the for-
mer the conditional probability of B under A. Consequently, one obtains

P(A|B)= P(B|A)P(A)
P(B)

, (6.2)

by equating the two formulae for P(A,B), (6.2) is called the Bayes’ the-
orem. If the random events A and B are independent with each other
in the sense the occurrence of B does not affect that of event A, i.e.,
P(A|B) = P(A) or P(B|A) = P(B), one has P(A,B) = P(A)P(B). In this
case the two events are independent with each other.

We write down the Bayes’ theorem in the following form,

p(w|{data})= p({data}|w)p(w)
p({data})

, or, p(w|D)= p(D|w)p(w)
p(D)

, (6.3)

where D or equivalently {data} is called the data, which plays a cen-
tral role in Bayesian analysis. Moreover, w is a parameter (or a set of
parameters) or a hypothesis to be estimated/investigated. For instance,
in the linear regression problem, it is the parameter appeared in the
fitting function, fw(x) = w0 +w1x+w2x2 + ·· · +wnxn = ∑n

j=0 w j x j , i.e.,

w = (w0,w1,w2, · · · ,wn)T. In addition, p(w|{data}) is the posterior dis-
tribution for the parameter w, i.e., it is the probability density distri-
bution (pdf) for the parameter w after observing the data, representing
people’s understanding on the parameter w combining with the data.
On the other hand, the p(w) is the prior for the parameter w, i.e., it is
the probability (density distribution) without any data input. The prior
plays a similar role as the posterior, however it may also reflect people’s
own understanding on the parameter w. Furthermore, p({data}|w) is
called the likelihood function, it characterizes the corresponding proba-
bility for the data with different parameters w. It is necessary to point
out that the likelihood is not a distribution function for the parameter
w, indicating that the integration of the likelihood over w does not give
the result 1. Finally, the p({data}) is a normalization constant guar-
anteeing the normalization of the posterior (called the evidence), i.e.,
p({data}) = ∫

p({data}|w)p(w)dw. The normalization constant is not a
function of the parameter w, and could be safely omitted in analyzing
problems involving the parameter w. Consequently, the Bayes’ theorem
could be rewritten in the direct form, posterior∼ likelihood×prior.

Let us use an example to fix the basic idea of the Bayesian analysis.
In this example one tries to check whether the given coin is fair or not.
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Fig. 11: Bayesian analysis for the example on throwing coins.

If it is fair that after a large number of throwings, the probability (or the
frequency) of the head or the tail is roughly one half. Here we denote
the event that the throwing result is the head as H. Naturally the H
could take any value between 0 and 1, i.e., 0≤ H ≤ 1. If H = 0, it strongly
indicates that the coin has two tails and no head. On the other hand if
the H is found to be 1, the coin has two heads and no tail. Similarly if
the H takes the value, e.g., 0.2, then it is believed that the coin is biased
towards the tail. Before throwing the coin, in fact one knows nothing
about the coin, and in this situation one could assume the following prior,

p(H)=
{

1, 0≤ H ≤ 1,
0, otherwise. (6.4)

Actually this prior is some unrealistic in the sense only two outcomes
are possible in the experiment. Or one could artificially treat the coin
has two heads and no tail and consequently p(H) = 1 if H = 1 and zero
otherwise in this case. Actually the effects of the prior on the hypothe-
sis H decays as the number of experiments increases. Next we need to
specify the likelihood appeared in the Bayesian analysis. For the cur-
rent example on throwing a coin, for example, if a total number throw-
ings is n and the probability that the head appears is denoted as r,
the likelihood could be described using the binomial distribution, i.e.,
p({data}|H)∼ Hr(1−H)n−r , where the constant in front of the likelihood
originated from the binomial distribution is omitted here for simplic-
ity. Consequently, the posterior is given as p(H|{data}) ∼ p({data}|H) ∼
Hr(1−H)n−r , and the meaning of it is very obvious: As the number of
throwing the coin increases the posterior is updated according to each
result of the throwing, which is used to explore the parameter H.

EXERCISE 5: What is mode of the posterior p(H|{data})? Denote it
as Hm, calculate the d2 p(H|{data})/dH2 at Hm.

EXERCISE 6: Prove the two relations E[w]=E[E[w|x]] and var[w]=
E[var[w|x]]+var[E[w|x]].

The relevant Bayesian analysis for the coin throwing example is
shown in Fig. 11, let us explain the figure in some details. Before the
first throwing since we know nothing about the coin (whether it is fair
or not, or whether it has two heads or two tails, etc.), the probability
for the outcome H is assumed to be a constant, i.e., anything on the H
has equal probability. After obtaining the first outcome (here it is the
head), one strengthens the confidence that the coin is head-biased while
weakens the confidence that the coin has other (unrealistic) values, see
the second panel shown in Fig. 11. Moreover, after the first outcome of
the head, it is certainly that there is no probabilities that the coin has
two tails, and consequently the probability for H = 0 descends to zero

immediately. The posterior after the first outcome is proportional to H.
Now if the second throwing still gives a head as the outcome, then the
posterior becomes proportional to H2, and the confidence on the head is
strengthened once again, see the third panel of the figure. The difference
between the third panel and the second panel is that although the over-
all shape for the steps is similar, the posterior in the third panel favors a
large H above 0.5. Specifically, since the posterior after one (two) head(s)
is 2H0 (3H2

0) according to p(H0|data) = H0/
∫ 1
0 dH p(H|data), where H0

is a certain number between 0 and 1, one finds that for, e.g., H0 = 5/6,
p(5/6|one head) = 5/3 < p(5/6|two heads) = 25/12, and the posteriors in
these two steps are equal at H0 = 2/3 and the one in the third panel is
greater than this in the second panel for H0 > 2/3. Furthermore, if the
third throwing gives a tail, the posterior is then proportional to (1−H)H2,
etc. After the outcome of a tail, the probability that the coin has two
heads suddenly becomes zeros as shown in the fourth panel of the fig-
ure. However the most possibility (i.e., the mode of the posterior) is still
larger than 0.5 since now there are essentially two heads over one tail.
The mode (at 2/3) is easily to found from the posterior (∼ (1−H)H2). By
throwing more and more times one could obtain more and more accu-
rate information on the fairness of the coin, see the remaining panels in
Fig. 11. It is essentially to point out at this time that in the Bayesian
analysis all the inference on the hypothesis H is based on the observa-
tions/experiments. For instance, after a large number of throwings, the
final inference on the H in the current experiment is found to be around
0.25, i.e., the coin is unfair and is tail-biased. Different experiments may
lead to very different results, and in this sense the Bayesian analysis is
experiment-based, and it is this nature the Bayesian analysis is widely
adopted in experiment-guiding subjects, e.g., in astrophysics and cosmol-
ogy, and in medical science. Another interesting point shown in Fig. 11
is that as the number of throwings increases the posterior tends to con-
centrate at the probable value, i.e., the uncertainties/fluctuations around
the probable value decrease, indicating the inference/prediction becomes
more and more accurate. Finally if one uses a different prior for the H
here, the posterior will become similar as Fig. 11, demonstrating the ef-
fects of the prior are floating by the data.

VII. MAXIMUM LIKELIHOOD ESTIMATION

If the parameter w is obtained by taking the maximum value of the
likelihood, we call the relevant method the maximum likelihood (ML) es-
timation. In order to make the discussion transparent and simple here
we adopt that the data is generated from an independently identity dis-
tribution (IID), e.g., by some Gaussian distribution, i.e., x(i) ∼N (µ,σ2)
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with i = 1 ∼ m. The aim of the current discussion is to estimate the
mean µ and the variance σ2 of the Gaussian distribution via these data.
One collectively denotes these data as X= (x(1), x(2), · · · , x(m))T, and since
the data samples are IID distributed, one naturally has the relation
p(X|µ,σ2) = ∏m

i=1N (x(i)|µ,σ2), it is the function of the µ and σ2 to be
estimated, and thus the likelihood. Maximizing the likelihood is equiv-
alent to maximizing the log-likelihood since the logarithmic function is
monotonic,

log p(X|µ,σ2)=− 1
2σ2

m∑
i=1

(x(i) −µ)2 − 1
2

m logσ2 − 1
2

m log(2π). (7.1)

By calculating the derivatives of log p(X|µ,σ2) with respect to µ and σ2

and then taking them to be zero leads to

µ̂ML = 1
m

m∑
i=1

x(i), σ̂2
ML = 1

m

m∑
i=1

(
x(i) − µ̂ML

)2
, (7.2)

here µ̂ML and σ̂2
ML are the sample mean and sample variance. We can

compute the mean of these sampled quantities. Noticing that when i ,
j, we have E[x(i)x( j)] = E[x(i)]E[x( j)] = µ2, and when i = j, E[x(i)x( j)] =
E[x(i),2] = var[x]+E2[x(i)] = µ2 +σ2, and thus E[x(i)x( j)] = µ2 + δi jσ

2.
Consequently, E[µ̂ML]=µ, and similarly

E[σ̂2
ML]≡

〈
σ̂2

ML

〉
=

〈
1
m

m∑
j=1

(
x( j) − 1

m

m∑
i=1

x(i)
)2〉

= 1
m

m∑
j=1

[〈
x(i),2

〉
− 2

m

m∑
i=1

〈
x(i)x( j)

〉
+ 1

m2

m∑
i,i′=1

〈
x(i)x(i′)

〉]

= 1
m

m∑
j=1

[
µ2 +σ2 − 2

m

(
mµ2 +σ2

)
+ 1

m2

m∑
i=1

(
mµ2 +σ2

)]

= 1
m

m∑
j=1

(
1− 1

m

)
σ2 =

(
1− 1

m

)
σ2. (7.3)

These results show that the mean of the mean is the same as the mean
of the Gaussian distribution, while the mean of the variance is different
from the distribution variance by a factor 1− 1/m, i.e., the variance is
under-estimated. The estimation (here the ML) is thus biased.

Fig. 12: Bias for the variance, here blue lines correspond to the real Gaussian
distribution and the magenta lines corresponds to the biased estimation.

If one introduces a new variance estimator, i.e.,

σ̃2 = m
m−1

σ̂2
ML = 1

m−1

m∑
i=1

(
x(i) − µ̂ML

)2
, (7.4)

then the new σ̃2 is unbiased. This is the reason why we defined the
SEM in (1.8) by including a factor (k−1)−1. Fig. 12 gives the sketch of
the bias of the variance estimation. Here two data points are generated
IID from the Gaussian distribution in each set and the distribution mean

of the original distribution could be reconstructed by these data points.
However the variance is under-estimated, i.e., the width of the magenta
lines is systematically narrower than that of the blue lines. If the data
number becomes large, the biasness weakens eventually.

EXERCISE 7: Is the estimation based on dx or d⊥ (equivalently Jx
or J⊥) in EXERCISE 1 biased or unbiased? Investigate by simulations.

VIII. LINEAR CURVE FITTING REVISITED

Fig. 13: Probabilistic interpretation of the curve fitting
problem.

Now we use the
viewpoint of probabil-
ity and the ML con-
sideration to review
the curve fitting prob-
lem. In this problem
one needs to calculate
some type of the er-
ror function and min-
imize this error func-
tion and in the mean
while the model could
predict a reasonable
value for the output y
as a new input x is
generated. In order
to arrive this aim, one
assets a Gaussian dis-
tribution for the out-
put y associated with each input x, and the mean of this Gaussian distri-
bution is given by the learning model for the data fw(x). Consequently,

p(y|x,w,β)=N (y| fw(x),β−1), (8.1)

here the β is called the precision parameter which is just the inverse of
the variance, see the sketch of Fig. 13 for its probabilistic meaning.

We use the training data (x(i), y(i)), or the (X,y) to learn the model
parameters w and β via the ML method. Since all the data samples are
obtained IID from the distribution (8.1), the likelihood function for the
parameters w and β is given by p(y|X,w,β) =∏m

i=1N (y(i)| fw(x(i)),β−1),
with the logarithmic of which as,

log p(y|X,w,β)=− β

2

m∑
i=1

[
fw(x(i))− y(i)

]2 + m logβ
2

, (8.2)

where the irrelevant term −(m/2)log(2π) was omitted. Maximizing the
likelihood is equivalent to minimizing its opposite. Since in the curve
fitting problems one also needs to minimize some type of the error func-
tion, the negative log-likelihood is in some sense equivalent to the error
function. We write out the negative log-likelihood function as

J(w)∼− log p(y|X,w,β)
m∑

i=1

[
fw(x(i))− y(i)

]2 − 1
2

m logβ. (8.3)

It demonstrates the squared error function (with least-squares) origi-
nates from maximizing the likelihood function under the Gaussian.

Calculating the derivative of log p(y|X,w,β) with respect to w and tak-
ing it to be zero, one obtains the ML estimation for w as ŵML. Similarly
taking derivative of log p(y|X,w,β) with respect to β, one obtains

1
β̂ML

= 1
m

m∑
i=1

[
fŵML (x(i))− y(i)

]2
. (8.4)

It is necessary to point out that one could first obtain the estimate ŵML
and then the β̂ML since in the Gaussian model these two parameters
are decoupled. In general situations one needs to take derivatives of
the parameters simultaneously. After obtaining the ŵML and β̂ML, one
could estimate the output y and the result is given by putting the ML
estimation into (8.1), i.e., p(y|x,ŵML, β̂ML)=N (y| fŵML (x), β̂−1

ML).
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If one introduces the prior for the parameter w, e.g., another Gaussian
distribution like

p(w|α)=N (w|0,α−11)=
( α

2π

)(n+1)/2
exp

(
−α

2
wTw

)
, (8.5)

where α is the precision parameter for the prior and n+1 is, e.g., the order
of the polynomial for nonlinear fitting. The posterior for w is obtained as
the product of the likelihood and the prior according Bayes’ theorem, i.e.,

p(w|X,y,α,β)∼ p(y|X,w,β)p(w|α). (8.6)

In order to obtain the optimal estimation for w one should find the
maximum (local or global) of the posterior and the process is called the
maximum-a-poster (MAP) optimization. Specifically, the MAP estima-
tion is equivalent to the minimum of the following function,

β

2

[
m∑

i=1

[
fw(x(i))− y(i)

]2 + α

β
wTw

]
. (8.7)

It is the (squared) error function including the regularization term char-
acterized by the coefficient λ=α/β.

In order to give the prediction on y one needs to do integration over
the parameter w, and the result is given by (here the dependence on α

and β is suppressed for simplicity),

p(y|x,X,y)=
∫

p(y|x,w)p(w|X,y)dw, (8.8)

where p(y|x,w) is given by (8.1) and p(w|X,y) by (8.6). For the general
nonlinear curve fitting problem these expressions could be wrote in the
analytical form, i.e., p(y|x,X,y)=N (y|m(x), s2(x)), with

m(x)=βϕ⃗T(x)S
m∑

i=1
ϕ⃗(x(i))y(i), s2(x)=β−1 + ϕ⃗T(x)Sϕ⃗(x), (8.9)

S−1 =α1+β
m∑

i=1
ϕ⃗(x(i))ϕ⃗T(x(i)), (8.10)

where the components of the vector ϕ⃗(x) is given by ϕ j(x)= x j .
The likelihood for the learning parameter w is given by

p(y|X,w,β)=
m∏

i=1
N (y(i)|wTϕ⃗(x(i)),β−1), (8.11)

where X and y are the input and output datasets, respectively. In order
to make the discussion be clear and simplicity, the prior of the parameter
w is also adopted as a Gaussian, i.e., p(w) = N (w|m0,S0). Using the
matrix splitting and transformation formulas, one obtains the posterior
for the parameter w, i.e., p(w|y)=N (w|mm,Sm), with

mm =Sm
(
S−1

0 m0 +βΦ⃗Ty
)
, S−1

m =S−1
0 +βΦ⃗TΦ⃗. (8.12)

Moreover, the precision parameter β here is assumed known in prior.
Furthermore, by introducing the precision parameter α for the prior
namely S0 =α−11, one has

mm =Sm
(
S−1

0 m0 +βΦ⃗Ty
)
→βSmΦ⃗Ty=

(
Φ⃗TΦ⃗

)−1
Φ⃗Ty, (8.13)

the last relation is under the assumption α→ 0, i.e., the prior has little
information on the parameter w. This is the familiar least-squares solu-
tion, i.e., the ML estimation under the Gaussian distribution, see (8.3).
In addition, if there is no data (m = 0) the posterior naturally reduces
to the prior. Finally, each time a new data sample arrives the posterior
should be updated by absorbing the effects of the current data sample,
and this posterior pdf acts as the prior before the next new data sample
arrives. In this sense, the parameter w is updated step by step which is
one of the main features of the Bayesian inference. In the following, the
prior in the calculation for the w is taken as p(w|α)=N (w|0,α−11), and
consequently mm =βSmΦ⃗Ty,S−1

m =α1+βΦ⃗TΦ⃗, and the logarithm of the
posterior is the conventional least-squares error including the regular-

ization terms,

log p(w|y)=− β

2

m∑
i=1

[
fw(x(i))− y(i)

]2 − α

2
wTw

+ terms independent of w, (8.14)

where the regularization coefficient λ↔α/β.

Fig. 14: Bayesian inference for the learning pa-
rameters w0 and w1 in the linear curve fitting
problem with total m = 50 data samples.

As a basic example,
we study the Bayesian
linear regression problem
in more details. The
physical model is adopted
as fphys(x) = w′

0 + w′
1x

where the two ground
truth parameters given
by w′

0 = −0.2 and w′
1 =

0.5. The data is still
simulated by the uni-
form random numbers,
i.e., x(i) ∼ Unif[−1,1], the
output y(i) is created via
the physical model value
fphys(x(i)) together with
a stochastic fluctuation
aδ ∼N (0,0.52), i.e., y(i) ∼
fphys(x(i))+ aδ. In addi-
tion, the learning model
is a line fw0,w1 (x) = w0 +
w1x with two effective
learning parameters w0
and w1. The aim of
the Bayesian inference
is to make inference on
these two parameters as
data samples generated.
Moreover the precision
parameter of the likelihood is fixed at the value of β= (1/0.5)2 = 4 while
that of the prior is fixed as α= 2.0, and the calculated results are shown
in Fig. 14 using total m = 50 total data samples. In the figure the left
column is the results for the likelihood function, the middle column for
the prior and/or the posterior, and the right column for the data. There
are total six linear curves randomly generated from the prior for w0 and
w1 in the first line of the right panel, and since at the beginning of the
simulation there is no data generated these lines are very irregular, i.e.,
they are totally random. Shift to the second line where the first data
sample is generated indicated by the green circle, now the left column of
this line is the likelihood for the parameter. By multiplying this likeli-
hood by the prior shown in the first line one obtains the corresponding
posterior, i.e., the middle panel shown in the second line. At this point if
one generates again six linear curves according to the posterior, one can
easily find that these lines are closer to the first data sample already gen-
erated. The reason is really simple since the data effects are considered
in the Bayesian inference framework. Next after the second data sample
is generated which is similar marked as a green circle in the right panel
of the third line, the corresponding likelihood is shown in the left panel
of this line and the posterior is obtained again by the product of the like-
lihood and the prior named the posterior of the last step. By generating
once again six curves via this posterior one can further find that these
curves are even closer to the two data samples. The simulation could be
updated data by data. As the number of data samples increases the peak
(mode) of the posterior, i.e., the MAP estimation for the learning parame-
ters, becomes more and more sharp, eventually to be consistent with the
realistic point (w′

0,w′
1) indicated in the figure by the magenta cross. With

very large m, e.g., m = 50 or 100, the six curves approach to the physical
model. The above process gives the main features of a typical Bayesian
inference on the learning problem, i.e., the learning becomes better and
better as more and more data samples arrive.
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IX. VARIANCE REDUCTION VIA DATA GENERATION

In many circumstances, not only the estimation on the learning pa-
rameter is important, but also the prediction on the output when new
data sample is generated. When the new data x(m+1) arrives the output
y(m+1) is updated according to

p(y(m+1)|y,α,β)=
∫

p(y(m+1)|x(m+1),w,β)p(w|y,α,β) (9.1)

where the dependence on the dataset X is suppressed here for simplicity.
This is the convolution of two Gaussians, one obtains

p(y(m+1)|y,α,β)=N (y(m+1)|mT
mϕ⃗(x(m+1)),σ2

m(x(m+1))), (9.2)

where σ2
m(x) = β−1 + ϕ⃗T(x)Smϕ⃗(x). The meaning of σ2

m(x) is very clear:
The first term is the noise carried by the data sample itself character-
ized by the precision parameter β, while the second term is the uncer-
tainty on the learning parameter characterized by the covariance matrix
Sm. It is useful to notice that since the noise and the parameter w is
independent with each other, the covariance is additive between them.
Moreover, the posterior becomes narrower as the new data sample is ob-
tained, see Fig. 14, indicating σ2

m+1(x) ≤ σ2
m(x). Specifically, the second

term approaches to zero under m →∞ since the width of the posterior of
w approaches to zero, i.e., Sm → 0, and σ2

m(x(m+1)) is characterized by β.
Since the relation σ2

m+1(x)≤σ2
m(x) is extremely important, let’s prove

it. Firstly let us notice that when the data “m+1” is generated, the like-
lihood is ∼N (y(m+1)| fw(x(m+1)),β−1), and the posterior is the product of
the likelihood and the prior, the relevant exponential factor in the poste-
rior is thus given by

(w−mm)T S−1
m (w−mm)+β

(
y(m+1) −wTϕ⃗(x(m+1))

)2
, (9.3)

from which one easily finds

S−1
m+1 =S−1

m +βϕ⃗(x(m+1))ϕ⃗T(x(m+1)), (9.4)

which is similar as the relation S−1
m = S−1

0 +βΦ⃗TΦ⃗ obtained previously,
see (8.12). One also obtains the update for the mean of the data namely
mm+1 =Sm+1(S−1

m mm+βϕ⃗(x(m+1))y(m+1)). Consequently, we obtain the
following results (where ϕ⃗m+1 = ϕ⃗(x(m+1))),4

Sm+1 =Sm −
βSmϕ⃗m+1ϕ⃗

T
m+1Sm

1+βϕ⃗T
m+1Smϕ⃗m+1

, (9.5)

σ2
m(x)−σ2

m+1(x)=
∥∥∥ϕ⃗T(x)Smϕ⃗(x)

∥∥∥2
/(

1
β
+ ϕ⃗T

m+1Smϕ⃗m+1

)
. (9.6)

Since the covariance matrix Sm is positive definite, the above expression
is always larger than zero as long as new data is generated, i.e., the
variance is always reduced as more and more data samples generate.

EXERCISE 8 :For a d-dimensional Gaussian x ∼N (x|⃗µ, Σ⃗), one can
decompose x into two parts as xa and xb, i.e., x = (xa,xb)T where the
dimension of xa is s. Consequently, the mean could be decomposed as
µ⃗= (⃗µa, µ⃗b)T, and similarly for the weight matrix,

Σ⃗=
(⃗
Σaa Σ⃗ab
Σ⃗ba Σ⃗bb

)
. (9.7)

According to the symmetry of the covariance-variance matrix, i.e., Σ⃗ =
Σ⃗T, the matrices Σ⃗aa and Σ⃗bb are also symmetric, and moreover Σ⃗ab =
Σ⃗T

ba. The inverse of the covariance matrix is called the precision matrix
and is denoted by Λ⃗= Σ⃗−1 with its component Λ⃗kk′ , here k,k′ = a,b.

(a) The first conclusion is on the conditional probability p(xa|xb). By

4The following relation is used (where A is a matrix and a a vector)(
A+aaT

)−1 =A−1 − (A−1a)(aTA−1)
1+aTA−1a

.

denoting the mean and covariance matrix of this distribution as µ⃗a|b
and Σ⃗a|b, respectively, and treating the xb as the data and only the
xa as the variable, one obtains by selecting the quadratic terms in-
volving the variable xa, and from which the expression for the co-
variance matrix could be obtained, i.e., Σ⃗a|b = Λ⃗−1

aa . Prove the rela-
tions, µ⃗a|b = µ⃗a + Σ⃗abΣ⃗

−1
bb

(
xb − µ⃗b

)
, Σ⃗a|b = Σ⃗aa − Σ⃗abΣ⃗

−1
bb Σ⃗ba.

(b) Assume that p(x) = N (x|⃗µ,Λ⃗−1), p(y|x) = N (y|Ax+b,L−1). Prove
E[y] = Aµ⃗+bcov[y] = L−1 +AΛ⃗−1AT, and show that E[x|y] = (Λ⃗+
ATLA)−1[ATL(y−b)+ Λ⃗µ⃗],cov[x|y]= (Λ⃗+ATLA)−1.

X. CORRELATIONS AND ERROR-BARS

We discuss the correlations among certain parameters estimated, e.g.,
from the maximum a posterior approach. We denote the posterior pdf
collectively as p({wi}|D) where D is the set of data samples, {wi} is the
set of parameters. In addition, we denote the logarithm of the posterior
pdf as Q, i.e., Q({wi})= log p({wi}|D). Firstly we investigate the situation
where there are two parameters a and b in the problem, and denote the
point corresponding to the maximum of the posterior as (a0,b0), which
is determined conventionally via [∂Q/∂a]a0,b0 = 0 and [∂Q/∂b]a0,b0 = 0.
Expand the logarithmic posterior around (a0,b0) to second order,

Q(a,b)≈Q0 +
1
2
Φ, Φ= (

δa δb
)(A C

C B

)(
δa
δb

)
, Π⃗=

(
A C
C B

)
, (10.1)

here the three quadratic terms characterize the width of the posterior
and play the fundamental role in correlations between the parameters a
and b. In addition, Q0 ≡Q(a0,b0) is a constant, and

A = ∂2Q
∂a2

∣∣∣∣∣
a0,b0

, B = ∂2Q
∂b2

∣∣∣∣∣
a0,b0

, C = ∂2Q
∂a∂b

∣∣∣∣∣
a0,b0

, (10.2)

with δa = a−a0,δb = b− b0. The correlation between the parameters a
and b is described by the properties of the matrix Π⃗.5 Particularly, after
solving the eigenvalue equation Π⃗x = λx, one could obtain two eigenval-
ues λ1 and λ2. The equation Q = ϕ> 0 gives the semi-axes of the equal-
probability surface of the ellipse, i.e., (ϕ/λ j)1/2 with j = 1,2. Naturally in
order the point (a0,b0) is the maximum one of the posterior, one requires
that the eigenvalues λ j be negative, or A < 0,B < 0 and AB > C2.

If one is only interested in knowing the properties of the parameter
a, then the effects of b could be integrated out as p(a|D)= ∫

p(a,b|D)db.
Under the quadratic approximation (10.1), this integration could be done
analytically, leading to the posterior for a as,

p(a|D)∼ exp

(
AB−C2

2B
(a−a0)2

)
, σa =

√
−B

AB−C2 , (10.3)

where the second expression gives the the error-bar of the a parame-
ter. A similar expression for σb could also be easily obtained. In fact,
the standard deviation or the root-mean-square error of a, namely σa
could be also written in the form, σ2

a = 〈δa2〉 = ∫
δa2 p(a,b|D)dadb, where

δa2 = (δa)2. Similarly, the covariance between a and b can be wrote out,
σ2

ab = 〈δaδb〉 = ∫
δaδbp(a,b|D)dadb. Basically, |σ2

ab| ≤ [σ2
aσ

2
b]1/2.

After working out the integration, we obtain

σ2
ab = C

AB−C2 . (10.4)

Combining it with the expressions for σ2
a and σ2

b, we can find(
σ2

a σ2
ab

σ2
ab σ2

b

)
= 1

AB−C2

(−B C
C −A

)
=−Π⃗−1. (10.5)

In fact, this is the covariance matrix of the parameters a and b. In the
special situation where C = 0, i.e., σ2

ab = 0, the inferred parameters a and

5See, e.g., D. Sivia and J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford,
2006, Chap.3.
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(a) (b) (c)

a

b

Fig. 15: Correlation between a and b for three typical cases.

b are uncorrelated. Consequently, the principal directions of the corre-
sponding posterior will be parallel to the coordinate axes, see the panel
(a) of Fig. 15. Moreover, as the magnitude of the coefficient C increases,
the posterior becomes more and more skew and elongated, reflecting the
growth of the correlation between the two parameters a and b, as shown
in the panels (b) and (c) of Fig. 15. Here, the a and b is anti-correlated
in the case (c) while positive-correlated in case (b). In the extreme situ-
ation where the value of C equals to ±p

AB, the elliptical contours are
infinitely wide in one direction and oriented at an angle of ±arctan

p
A/B

with respect to the a axis. Although the error-bars of a and b will be ex-
tremely huge, the large off-diagonal elements of the covariance matrix
still tells that one combination of the parameters is meaningful. More
precisely, if the covariance is positive then the posterior will be very broad
in the direction b = ka where k = p

A/B, and fairly narrow perpendicular
to it. Actually, one has b−ka ≈ const., indicating that data contain much
information about the sum b−ka instead of the difference b+a/k. Similar
conclusion could be cast if the covariance is negative, i.e., the posterior in
this case will be very broad in the direction b =−ka, narrow perpendicu-
lar to it, and one has b+ ka ≈ const., indicating that data contain much
information on b+ka.

EXERCISE 9: For the logarithmic likelihood function (7.1), compute
the second derivatives of the log p(X|µ,σ2) with respective to µ and σ2

and confirm that the relations A < 0,B < 0 and AB > C2 are fulfilled. Is
the coefficient C zero? Assume that the priors of the parameters µ and
σ2 are simply constants.

EXERCISE 10: Work out the in-front constant of p(a|D) in (10.3).

In situations where there are more than two parameters, the above
discussion could be straightforwardly generalized, e.g., the quadratic ap-
proximation for the logarithmic posterior takes the form,

Q(w)≈Q(w0)+ 1
2

n∑
i, j=1

∂2Q
∂wi∂w j

∣∣∣∣∣
w0

(
wi −w0

i

)(
w j −w0

j

)
+·· · , (10.6)

where n is the dimension of the parameter vector w ∈Rn. Consequently,

p(w|D)= p({wi}|D)∼ exp
[

1
2

(w−w0)T∆Q(w0) (w−w0)
]

, (10.7)

here ∆L ≡ ∇2L is the symmetric n×n matrix of the second derivatives,
with its i j-component given by ∂2Q/∂wi∂w j .

For the Gaussian noise, we can use the samples to estimate its char-
acteristic parameters, e.g., the mean µ of the noise. Here, we have
p(µ|D) = ∫ ∞

0 p(µ,σ|D)dσ, where D = {x(i)} and the integrand can be ex-
pressed as a product of the likelihood and the prior. Adopting the prior
as the constant, one then naturally has (7.1), and consequently,

p(µ|D)∼
∫ ∞

0
ϑm−2 exp

[
−ϑ2

2

m∑
i=1

(x(i) −µ)2
]

dϑ, ϑ= 1/σ. (10.8)

Scaling φ = ϑ[
∑m

i=1(x(i) −µ)2]1/2 gives p(µ|D) ∼ [
∑m

i=1(x(i) −µ)2]−(m−1)/2,
and

dQ
dµ

∣∣∣∣
µ0

=
(m−1)

∑m
i=1(x(i) −µ)∑m

i=1(x(i) −µ)2
= 0, Q = log p(µ|D), (10.9)

solving it gives µ0 = m−1 ∑m
i=1 x(i), i.e., the ML solution µ̂ML. In other

words, the optimal estimation for µ is still given by the arithmetic aver-
age of the samples. Differentiating Q for a second time and evaluating it
at the corresponding maximum value µ0, one obtains

d2Q
dµ2

∣∣∣∣∣
µ0

=− m(m−1)∑m
i=1(x(i) −µ)2

. (10.10)

Since the error-bar for the best estimate is given by the inverse of the
square root of the minus the second derivative (as inferring from the
basic formula for the 1d Gaussian), we can obtain our estimation for the
mean as

µ=µ0 ±
sp
m

, s2 = 1
m−1

m∑
i=1

(
x(i) −µ0

)2
. (10.11)

Here s2 is simply the unbiased variance estimator σ̃2 of (7.4). In this
sense, we re-explain the factor (m−1)−1 adopted in (7.4).

When discussing the linear curve fitting problem in the starting part
of the current lecture, we assume that the noise produced on the simu-
lated data has the same error-bar σ. However, this restriction is limited-
useful and could be generalized to different error-bars for each data sam-
ple {σ(i)}, i.e., the likelihood for the parameters a and b takes the follow-
ing form,

p(D|⃗θ)= 1√
2πσ2

i

exp

[
−

( f
θ⃗
(x(i))− y(i))2

2σ(i),2

]
, θ⃗ = (a,b), D = {y(i)}, (10.12)

where f
θ⃗
(x) is the learning model, see (1.1). Under the independence

assumption of the samples, the total likelihood function is obtained as,

p(D|⃗θ)∼ e−χ
2/2, χ2 =

m∑
i=1

(
f
θ⃗
(x(i))− y(i)

σ(i)

)2

. (10.13)

Adopting the notation J for the (negative) logarithmic posterior,

J (⃗θ)=− log p(⃗θ|D)= 1
2
χ2 +const.∼ 1

2

m∑
i=1

(
f
θ⃗
(x(i))− y(i)

σ(i)

)2

, (10.14)

see (1.1), and (10.14) is the weighted least squares. Based on (10.14), one
can find the optimal a and b appeared in the fitting model y= ax+b.

EXERCISE 11: Work out the closed form for the optimal a∗ and b∗.

XI. CENTRAL LIMIT THEOREM

Let us ask a question that if m IID random samples are generated
from a distribution with the mean µ and the variance σ2, what is the
distribution for the quantity

X = xm −µ

σ/
p

m
, xm = 1

m

m∑
i=1

x(i). (11.1)

Mathematically, we have the relation limm→∞ P(a ≤ X ≤ b)=Φ(b)−Φ(a),
with Φ(x)= [1/

p
2π]

∫ x
−∞ exp(−x2/2)dx the cdf of the normal Gaussian.

We prove the central limit theorem via calculating the generating
function of the variable X , i.e., it is given by the formula et2/2. After
introducing the new variable y(i) = (x(i) −µ)/σ, one has

X = 1p
m

m∑
i=1

x(i) −µ

σ
= 1p

m

m∑
i=1

y(i). (11.2)

Since the mean of the variable y(i) is zero and the variance is unit, and
by considering the relation

E[etx]=Mx(t)= 1+ tµ1 + t2µ2/2!+ t3µ3/3!+·· · , (11.3)

one obtains the generating function for the y(i) as My(i) (t)= 1+2−1t2+·· · .
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Now, we have M ′
y(i) (t)= t,M ′′

y(i) (t)= 1, indicating that,

MX (t)=
∫

eX t p(X )dX =
∫

exp

(
tp
m

m∑
i=1

y(i)
)

p

(
1p
m

m∑
i=1

y(i)
)

dX

=
m∏

i=1

∫
exp

(
ty(i)
p

m

)
m∏

i=1
p

(
y(i)
p

m

)
m∏

i=1
d

(
y(i)
p

m

)

=
m∏

i=1

[∫
exp

(
ty(i)
p

m

)
p

(
y(i)
p

m

)
d

(
y(i)
p

m

)]

=
m∏

i=1

[∫
exp

(
ty(i)
p

m

)
p

mp
(
y(i)

) 1p
m

dy(i)
]

=
[

My(i)

(
tp
m

)]m
=

(
1+ t2

2
1
m

+·· ·
)m

, (11.4)

where one uses the independence of the random samples with their
pdf given by p(x, y) = p(x)p(y), together with the basic relation p(z) =
p(y)|∂y/∂z| with z = y/

p
m and ∂y/∂z = p

m. Consequently p(y(i)/
p

m) =p
mp(y(i)), and thus limm→∞MX (t) = et2/2, furnishing the proof. The

quantity xm has the distribution approximately as N (µ,σ2/m).
The center limit theorem is relevant for the discussion on the posterior

distribution when the data number is enough large. Actually, one could
prove that the posterior p(w|x) always takes the form(

w−E[w|x]√
var[w|x]

∣∣∣∣∣x

)
→N (0,1). (11.5)

Let us prove the posterior takes the form of Gaussian when the sample
number m is large. For the scalar dataset x = (x(1), · · · , x(m)), assume
that the real physical model describing it is given by f (x), and the prior
for w is denoted as p(w). Moreover, the likelihood for w is denoted as
p(x|w) = ∏m

i=1 p(x(i)|w) by assuming that the data is IID. The deviation
between the likelihood and the real distribution is

KL
(
f (x(i))‖p(x(i)|w)

)
=E f (x(i))

[
log

(
f (x(i))

p(x(i)|w)

)]
, (11.6)

which is called the Kullback–Leibler (KL) divergence.

EXERCISE 12: Prove that the KL divergence is unsymmetric with
respect to f and p. Moreover, prove that the KL divergence is non-
negative based on the convexity of − log x via Jensen’s inequality which
says that for a convex function f (x), one has E[ f (x)]≥ f (E[x]).

Denote w0 the minimum point of the KL divergence, i.e., the value
minimizing the KL term. In addition one assumes that the adopted like-
lihood is reasonable in the sense that there exists a real parameter w
that the real model matches the likelihood, i.e., f (x(i))= p(x(i)|w). Under
this circumstance the KL term takes its minimum at this real param-
eter and the w could be naturally denoted as w0. We firstly need to
prove p(w = w0|x) → 1 as m →∞. The conclusion is equivalent to for all
w,w0, the corresponding probability approaches to zero under large m.
Consider,

log
(

p(w|x)
p(w0|x)

)
= log

(
p(w)
p(w0)

)
+

m∑
i=1

log

(
p(x(i)|w)
p(x(i)|w0)

)
. (11.7)

If w and w0 are treated as fixed and x(i) ∼ f , the second term on the right
hand side is the sum of the IID samples, and each one could be written,6

E

[
log

(
p(x(i)|w)
p(x(i)|w0)

)]
=KL(w0)−KL(w). (11.8)

Consequently, if w = w0 the above expression is zero while otherwise it is
negative (since w0 is its minimum point). If w ,w0, the second term on
the right hand side of the previous equation could be expressed as sum

6A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin,
Bayesian Data Analysis, 3rd, 2014, Taylor and Francis Group, Appendix B.

of the m random variables with a negative mean, i.e., if m →∞, the sum
also approaches to negative infinity. It means that p(w|x)/p(w0|x)→ 0 as
m →∞, and thus p(w|x)→ 0 under m →∞. On the other hand since the
total probability is normalized, one obtains that p(w0|x)→ 1.

Next, denote the mode of the posterior as ŵ, we should prove that
when m →∞ as ŵ → w0 (normality). In order to do that, we expand

log p(w|x)≈ log p(ŵ|x)+ 1
2

(w− ŵ)2
[

d2

dw2 log p(w|x)

]
w=ŵ

+ 1
6

(w− ŵ)3
[

d3

dw3 log p(w|x)

]
w=ŵ

+·· · , (11.9)

where the first term is independent of w and the second term can be
rewritten,[

d2

dw2 log p(w|x)

]
w=ŵ

= d2

dw2 log p(ŵ)+
m∑

i=1

[
d2

dw2 log p(x(i)|w)

]
w=ŵ

,

(11.10)
here the first term is constant (independent of w) and the second term is
the sum of each IID sample with negative mean. If one has f (x)= p(x|w0)
for some w0, then each term owns the mean value −J(w0) with,

J(w)=E

[(
dlog p(x|w)

dw

)2
∣∣∣∣∣w

]
=−E

[
d2 log p(x|w)

dw2

∣∣∣∣∣w

]
, (11.11)

which is called the Fisher information for w. Consequently,[
d2

dw2 log p(w|x)

]
w=ŵ

= d2

dw2 log p(ŵ)+
m∑

i=1

[
d2

dw2 log p(x(i)|w)

]
w=ŵ

∼−mJ(w0)+constant. (11.12)

Similarly, one could prove that the high order terms in the expansion
have lower increasing speed compared with the number m, indicating as
the data number m increases only the second order contribution is kept
with the corresponding variance (mJ(w0))−1.

EXERCISE 13: Given the transform ϕ= t(θ), prove the corresponding
transform for the Fisher information is J1/2(ϕ)= J1/2(θ)|dθ/dϕ|.

XII. LAW OF LARGE NUMBERS: RANDOMNESS

Another very useful concept/technique in statistics is the law of large
numbers, here we briefly introduce the very basic concept of it. Assume
that x(i) with i = 1 ∼ m are m IID samples from some distribution, one
then has

P

(∣∣∣∣∣ x(1) + x(2) +·· ·+ x(m)

m
−E[x]

∣∣∣∣∣≥ ϵ

)
≤ var[x]

mϵ2 (12.1)

for some positive number ϵ. In order to prove the law of large numbers,
one needs the following two inequalities,

(a) For any non-negative random x and a > 0, P(x ≥ a)≤E[x]/a.

(b) For any random x and c > 0, P(|x−E[x]| ≥ c)≤ var[x]/c2.

They are called Markov’s and Chebyshev’s inequalities, respectively, and
hold both for discrete and continuous random numbers, here we prove
them under the continuous case. For a continuous non-negative random
variable x with pdf p, one has

E[x]=
∫ ∞

0
xp(x)dx =

∫ a

0
xp(x)dx+

∫ ∞

a
xp(x)dx

≥
∫ ∞

a
xp(x)dx ≥ a

∫ ∞

a
p(x)dx = aP(x ≥ a), (12.2)

and consequently leading to the Markov’s inequality. In order to prove
the Chebyshev’s inequality, note that y = |x−E[x]|2 is a non-negative
random variable with E[y]= var[x], so the Markov’s inequality naturally
leads to Chebyshev’s inequality. The Markov’s inequality bounds the tail
of a distribution using only information about the mean while the Cheby-
shev’s inequality also uses the variance of the distribution.

— 12 —



Now we prove the law of large numbers. Since x(i) is IID,

E

[
x(1) + x(2) +·· ·+ x(m)

m

]
= 1

m

m∑
i=1

E[x]=E[x], (12.3)

and thus

P

(∣∣∣∣∣ x(1) + x(2) +·· ·+ x(m)

m
−E[x]

∣∣∣∣∣≥ ϵ

)

=P

(∣∣∣∣∣ x(1) + x(2) +·· ·+ x(m)

m
−E

[
x(1) + x(2) +·· ·+ x(m)

m

]∣∣∣∣∣≥ ϵ

)
. (12.4)

By using Chebyshev’s inequality (and the relation var[ax]= a2 var[x]),

P

(∣∣∣∣∣ x(1) + x(2) +·· ·+ x(m)

m
−E

[
x(1) + x(2) +·· ·+ x(m)

m

]∣∣∣∣∣≥ ϵ

)

≤ 1
ϵ2 var

[
x(1) + x(2) +·· ·+ x(m)

m

]
= 1

m2ϵ2

m∑
i=1

var[x]= var[x]
mϵ2 . (12.5)

Similarly, by applying the Markov’s inequality to the random variable
|x−µ|k, one has

P(|x−µ| ≥ t)≤ E[(x−µ)k]
tk , t > 0, µ=E[x]. (12.6)

On the other hand, suppose x has the momentum generating function
well defined near zero, i.e., ϕ(λ) =Mx−µ(λ) exists for all |λ| ≤ b for some
constant b > 0, then for any λ ∈ [0,b] one has by applying the Markov’s
inequality to the variable y= eλ(x−µ),

P(x−µ≥ t)= P
(
eλ(x−µ) ≥ eλt

)
≤E[eλ(x−µ)]/eλt. (12.7)

If the random variable x is Gaussian, then it gives P(x ≥ µ + t) ≤
exp(−t2/2σ2) where t ≥ 0, it is called the Chernoff ’s bound for the
Gaussian random variable. If the random variable x has the property
E[eλ(x−µ)]≤ eσ

2λ2/2,λ ∈R, x is called sub-Gaussian with parameter σ.

EXERCISE 14: Show that for any constant c ≥ 1, there exist distri-
butions for which Chebyshev’s inequality is tight.

EXERCISE 15: Consider the pdf p(x = 0) = 1−1/a and p(x = a) = 1/a.
Plot the pdf that x is greater than or equal to a as a function of a for the
bound given by the Markov’s inequality applied to x2 and x4.

Consider an example, let x and y be two d-dimensional random point
whose coordinates are each selected from a zero mean and unit variance
Gaussian. Notice that E[|x|2] = ∑d

i=1 E[x2
i ] = d var[xi] = d, so the mean

squared distance of a point from the center is d. Moreover,7

‖x−y‖2 =
d∑

i=1
(xi − yi)

2 =
d∑

i=1

(
E[x2

i ]+E[y2
i ]−2E[xi]E[yi]

)
=

d∑
i=1

(
var[xi]+var[yi]−2E[xi]E[yi]

)= 2d. (12.8)

These relations together indicate that the random d-dimensional x and
y must be approximately orthogonal since |x−y|2 ≈ x2+y2. If one scales
these random points to be unit length and call x the north pole, much
of the surface area of the unit ball lies near the equator. An important
property of the high-dimensional objects is that most of their volume is
near the surface. Consider a ball B with radius r in d-dimensions, if one
shrinks the radius of the ball by an amount ϵ to produce another ball B′
with radius r(1− ϵ), then vol(B′)/vol(B) = (1− ϵ)d ≤ e−ϵd , where one uses
the inequality 1−x ≤ e−x. Fixing ϵ and letting d →∞, the above quantity
rapidly approaches to zero. It means the nearly all of the volume of B
must be in the portion of B that does not belong to the region B′. We
denote S the unit ball in dimension d.

7For a general reference, see, A. Blum, J. Hopcroft, and R. Kannan, Founda-
tions of Data Science, Cambridge, 2020.

1

1− 1/d

annulus of width 1/d

Fig. 16: Most volume of the d-ball is contained in
an annulus of width O(1/d).

An immediate conse-
quence of the above ob-
servation is that at least
a 1− e−ϵd fraction of the
volume of the unit ball is
concentrated in a small
annulus of width ϵ at the
boundary. Particularly,
most of the volume of the
d-dimensional unit ball is
contained in an annulus
of width O(1/d) near the
boundary. See Fig. 16 for
the sketch of the predic-
tion. If the radius is r
then the annulus width is on the order O(r/d). Moreover, one can show
that most of the volume of the unit ball in high dimensions is concen-
trated near its “equator”. More specifically, for any unit-length vector a
defining the “north pole”, most of the volume of the unit ball lies in the
thin slab of points whose inner product with a has magnitude O(d−1/2).
In order to show this fact it suffices by symmetry to fix the a to be the
first coordinate vector. Specifically we want to show that most of the
volume of the unit ball has x1 =O(d−1/2). Thus we can show that two
random numbers (points) in the unit ball are with high probability nearly
orthogonal.

EXERCISE 16: For a d-dimensional circular cylinder of radius r and
height h, what is the surface area and what is the volume V (d)? Simi-
larly, show the volume of a unit d-ball is V (d)= 2πd/2/dΓ(d/2).

f/
√

d− 1

BH

x1

dx1
1

√

1− dx21

Fig. 17: Most of the volume of the upper hemisphere in dimension d is below the
plane defined by x1 = f /

p
d−1.

By symmetry we need to prove that at most a (2/ f )e− f 2/2 fraction of the
half of the ball with x1 ≥ 0 has x1 ≥ f /

p
d−1 where f ≥ 1 is a constant

and here we consider d ≥ 3. Let B denote the portion of the ball with
x1 ≥ f /

p
d−1 and H denote the upper hemisphere, see Fig. 17. The idea

is to show that the ratio of the volume of B to the volume of H goes to
zero by calculating an upper bound on the volB and a lower bound on the
vol(H) and proving that,

vol(B)
vol(H)

≤ upper bound vol(B)
lower bound vol(H)

≤ 2
f

exp

(
− f 2

2

)
. (12.9)

In order to calculate the volume of B, integrate an incremental volume
that is a disk of width dx1 and whose face is ball of dimension d−1 with

radius
√

1− x2
1. The surface area of the disk is (1−x2

1)d/2−1/2V (d−1) and
the volume above the slice is

vol(B)=
∫ 1

f /
p

d−1

(
1− x2

1

) d−1
2 V (d−1)dx1 ≤ V (d−1)

f
p

d−1
exp

(
− f 2

2

)
. (12.10)

The volume of the hemisphere below the plane x1 = 1/
p

d−1 is a lower
bound on the entire volume and it is at least that of a cylinder of height
1/

p
d−1 and radius

p
1−1/(d−1). The volume of the cylinder is,

V (d−1)
(

d−2
d−1

)d/2−1/2
· 1p

d−1
. (12.11)
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By using the fact (1− x)y ≥ 1− yx for y ≥ −1, and the volume of the
cylinder is at least V (d −1)/2

p
d−1 for d ≥ 3. Here we use the above

technique involving the cylinder is for obtaining the lower limit contain-
ing the factor V (d−1), which could be canceled by the same one included
in the upper limit fro the volume of B. After combining these two limits,
one obtains

ratio≤ V (d−1)

f
p

d−1
exp

(
− f 2

2

)/
V (d−1)

2
p

d−1
= 2

f
exp

(
− f 2

2

)
. (12.12)

For f ≥ 1 and d ≥ 3 at least a fraction of 1−(2/ f )e− f 2/2 of the volume of the
d-dimensional unit ball has |x1| ≤ f /

p
d−1, i.e., almost all of the mass is

near the equator. It should be point out that the range of f depends on d,
i.e., one must have f /

p
d−1≤ 1 or f ≤ p

d−1. In the limit d →∞ one has
V (d) → 0. From the ratio V (d+1)/V (d) one finds that the decreasing on
the V (d) grows faster and faster as d increases. In addition, the surface
area of the unit ball is given by S(d) = ∂V (d)/∂r = 2πd/2rd−1/Γ(d/2) and
consequently S(d)/V (d)= d/r, with the latter being d for the unit ball. It
shows that as d →∞, all most all of the volume is near the surface.

EXERCISE 17: Consider a sphere of radius R in d-dimensions to-
gether with the concentric hypercube of side 2R, so that the sphere
touches the hypercube at the centers of each of its sides. Prove that the
ratio of the volume of the sphere to the volume of the hypercube is given
by πd/2/d2d−1Γ(d/2). By using Stirling’s formula for the Γ function, i.e.,
Γ(x+1)≈ (2π)1/2e−xxx+1/2 for x À 1, show that as d →∞ the above ratio
approaches to zero. Show also that the ratio of the distance from the cen-
ter of the hypercube to one of the corners, divided by the perpendicular
distance to one of the sides, is

p
d.

0 4 8 12 16 20 24 28 32 36 40
d

0.0

0.2

0.4

0.6

0.8

1.0

s
(i
)
=

|x(
i)

·y
(i
) | 1/

√
d

Fig. 18: Cosine value s(i) between two random vectors on the unit ball.

Now we draw two points randomly from the unit ball, with high proba-
bility their corresponding vectors will be nearly orthogonal to each other.
If one defines the vector in the direction of the first point as the north
pole, with high probability the second will have a projection of only
±O(1/

p
d) in this direction thus their inner product will be ±O(1/

p
d).

It implies that with high probability the angle between the two vectors
will be π±O(1/

p
d). Fig. 18 gives the simulation result on s(i) = |x(i) ·y(i)|

where a total 10 independent drawings (i.e., i = 1∼ 10) for each d are per-
formed, the blue curve corresponds to the theoretical prediction ∼ 1/

p
d.

We can formulate this conclusion in more accurate form: If we draw m
points at random in the unit ball, with high probability all points will be
close to unit length and each pair of them will be orthogonal, i.e., with
probability 1−O(1/m), we have

‖x(i)‖ ≥ 1− 2logm
d

, x(i),Tx( j) = x(i) ·x( j) ≤
√

6logn
d−1

, (12.13)

for i , j. The prove is straightforward. The probability ‖x(i)‖ ≤ 1− ϵ is
less than e−ϵd , thus

P
(
‖x(i)‖ ≤ 1− 2logm

d

)
≤ exp

(
−2logm

d
·d

)
= 1

m2 . (12.14)

By the union bound the probability there exists an i such ‖x(i)‖ <
1− 2logm/d is at most 1/m. Moreover, for a component of a Gaussian

vector the probability |x(i)| > f /
p

d−1 is at most (2/ f )e− f 2/2. There
are m(m− 1)/2 pairs i and j and for each pair if we define x(i) as the
north pole the probability that the projection of x( j) onto to the north
pole is more than [logm/(d − 1)]1/2 is at most O(e−6logm/2) = O(m−3).
Thus the inner product condition is violated with probability at most
O(m(m− 1)m−3) ∼ O(1/m). In fact one can even use the above result
to show the volume of the unit ball approaches to zero without the ex-
plicit formula for V (d). More specifically, consider a small box centered
at the origin of side length 2 f /

p
d−1. Then for f = 2

√
logd this box

contains over half of the volume of the ball. On the other hand, the vol-
ume of this box clearly goes to zero as d goes to infinity, since it volume
is O([logd/(d−1)]d/2). Consequently the volume of the ball goes to zero
as well. With f = 2

√
logd, the fraction of the volume of the ball with

|x1| ≥ f /
p

d−1 is at most

2
f

exp

(
− f 2

2

)
= 1√

logd
e−2logd = 1

d2
√

logd
< 1

d2 . (12.15)

Since this is true for each of the d dimensions, by a union bound at most
a O(1/d) ≤ 1/2 fraction of the volume of the ball lies outside the cube,
furnishing the proof. It seems strange how it can be that nearly all the
points in the unit ball are very close to the surface and yet in the mean-
while nearly all the points are in a box of side length O([logd/(d−1)]1/2).
The ingredient is to remember that points on the surface of the ball sat-
isfy x2

1 + ·· · + x2
d = 1, so for each each coordinate i, a typical value will

be ±O(1/
p

d). Actually it is often help to think of picking a random
point on the sphere as very similar to picking a random point of the form
(±1/

p
d,±1/

p
d, · · · ,±1/

p
d).

extra region
projection

projection

Fig. 19: Drawing random points on the circle.

We now consider generat-
ing points uniformly at ran-
dom on the surface of the unit
ball. For the two-dimensional
version of generating points
on the circumference of the
unit-radius circle, we can in-
dependently generate each
coordinate uniformly at ran-
dom from the interval [−1,1]
and then project each point
onto the unit circle, see
Fig. 19. However, the distri-
bution is not uniform since
more points fall on a line
from the origin to a vertex of the square than fall on a line from the
origin to the midpoint of an edge of the square due to the difference in
length. To solve this problem one could discard all points outside the
unit circle and project the remaining points onto the circle. In higher
dimensions this method does not work since the fraction of points that
fall inside the ball drops to zero and all of the points would be thrown
away. In this situation the solution is to generate a point each of whose
coordinates is an independent Gaussian variable. In particular, generate
x1, x2, · · · , xd using a zero-mean and unit-variance Gaussian on the real
line, e.g., via the Box–Muller method.8 Thus the probability density of
the data sample x is given by

p(x)= 1
(2π)d/2 exp

(
−

x2
1 + x2

2 +·· ·+ x2
d

2

)
(12.16)

and is spherically symmetric. Normalizing the vector x to a unit vec-
tor gives a distribution that is uniformly over the surface of the sphere.
Notice that once the vector is normalized its coordinates are no longer
statistically independent. To generate a point z uniformly over the ball
(both surface and the interior), scale the point x/‖x‖ generated on the
surface by a scalar ρ ∈ [0,1]. The next question is what should the dis-
tribution of ρ be as a function of the radial length r, namely the func-

8G. Box and M. Muller, A Note on the Generation of Random Normal Deviates,
The Annals of Mathematical Statistics, 29, 610 (1958).
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tion ρ(r)? The answer is that ρ(r) is proportional to rd−1 in dimension
d. Solving the integration

∫ 1
0 crd−1dr = 1 gives the constant c = d. An-

other way to see this formally is that the volume of the radius r ball in d
dimension is rdV (d) where V (d) is the volume for unit ball, see EXER-
CISE 18. The density at radius r is exactly (d/dr)(rdV (d)) = drd−1V (d).
So pick ρ(r) = drd−1 for 0 ≤ r ≤ 1 one can succeed in generating a point
z= ρx/‖x‖ = drd−1x/‖x‖ uniformly at random from the unit ball by using
convenient spherical Gaussian. For the 2d case, one would expect that
the random x and y components are given by x = R cosϕ and y = R sinϕ

where R ∼ Unif[0,1] and ϕ ∼ Unif[0,2π]. However, the scaling function
ρ takes the form ρ(r) = 2r, and the r-dependence of the ρ function tells
that the correct sampling approach is x = p

R cosϕ and y= p
R sinϕ. See

Fig. 20 where the left panel is the result from the naive consideration
while the right panel gives the correct sampling. It is obvious that in the
left panel there are points near the center than the surface.
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Fig. 20: Drawing random points on the 2d unit ball (circle).

d

y =
√
x√

d

O(
√
d)

O(1)

Fig. 21: Concentration of the norm of a random vector x in Rd .

A one-dimensional Gaussian has its mass close to the origin. However
as the dimension d increases new thing emerges. The d-dimensional
spherical Gaussian with zero mean and variance σ2 in each direction
has the density function p(x) = [2πσ2]−d/2e−‖x‖2/2σ2

. The value of the
density is maximum at the origin but there is very little volume there.
To see it, by taking σ2 = 1 and integrating the probability density over a
unit ball centered at the origin yields almost zero mass, since the volume
of such a ball is negligible. In fact one needs to increase the radius of
the ball to nearly

p
d before there is a significant volume and hence sig-

nificant probability mass. If one increases the radius much beyond
p

d,
the integral barely increases even though the volume increases, since
the probability density is dropping off at a much higher rate. Intuitively,
notice that E[x2] ≈ d, so the mean squared distance of a point from the
center is d. We often call the square root of the mean squared distancep

d as the radius of the Gaussian. Let us show these features by doing
some mathematics. The probability density function over a thin shell of
radius r and width ϵ is p(r)ϵ where p(r) is

p(r)= S(d)rd−1

(2πσ2)d/2 e−r2/2σ2
, (12.17)

where S(d) is the surface of the unit ball in dimensions d. Taking the
derivative of p(r) with respect to r, one obtains dp(r)/dr = p(r)[(d−1/r)−
r/σ2], which gives the optimal r as r∗ = p

d−1σ ≈ p
dσ with the latter

being effective for large d. Expanding the p(r) near r∗ gives p(r∗+ϵ) as,

p(r∗)exp

[
− (r∗+ϵ)2

2σ2 + (d−1)log(r∗+ϵ)

]
≈ p(r∗)e−ϵ

2/σ2
, (12.18)

using the expansion log(1+ x) ≈ x− x2/2. These formulae show that r∗
is a maximum of the radial probability density and also that p(r) decays
exponentially away from its maximum value at r∗ with length scale σ.
The above discussion establishes the interesting relation for large d,√

d±O(
p

d)≈
p

d±O(1), (12.19)

i.e., while ‖x‖2 deviates by O(
p

d) around d, ‖x‖ deviates by O(1) (i.e., a
constant) around

p
d, see Fig. 21 for an illustration of this result.

EXERCISE 18: Sample uniformly in the 2d/3d unit sphere. Plot the
density distribution (12.17) as a function of r for fixed σ and large d.

One can actually separate Gaussians where the centers are much
closer by adopting the singular value decomposition algorithm. In fact
it is the basic idea of all the dimension reduction techniques. The pro-
jection f : Rd →Rs is as follows: Pick s Gaussian vectors a(1),a(2), · · · ,a(s)

in Rd with unit-variance coordinates. For any vector b, define the pro-
jection f(b) as f(b) = (a(1) ·b,a(2) ·b, · · · ,a(s) ·b)T. The projection function
f is the vector of inner products of b with the a(i). It could be shown
that with high probability that ‖f(b)‖ ≈ p

s‖b‖. For any two vectors b1
and b2, we have f(b1 −b2) = f(b1)− f(b2). Thus in order to estimate the
distance ‖b1 −b2‖ between two vectors in Rd , it is suffices to calculate
‖f(b1)− f(b2)‖ = ‖f(b1 −b2)‖ in the s-dimensional space, since the factor
of

p
s is known. The reason that distances increase when we project to

a lower-dimensional space is that the vector a(i) is not unit length. We
state the above description in more accurate form: Let b be a fixed vector
in Rd and let f be defined as above. There exists constant f > 0 such that

P
(∣∣‖f(b)‖− p

s‖b‖∣∣≥ ϵ
p

s‖b‖)≤ 3e− f sϵ2
, 0< ϵ< 1, (12.20)

where the probability is taken over the random draws of the vector a(i)

used to construct the function f. This conclusion is called the random
projection theorem. Without of loss of generality we may assume that
b is a unit vector. The sum of independent normally distributed real
variables is also normally distributed where the mean and the variance
are the sums of the individual means and the variances. Since a(i) ·b =∑d

j=1 a(i)
j b j , the random variable a(i) ·b has Gaussian density with zero

mean and unit variance, more specifically one has,

var
[
a(i) ·b

]
= var

[
d∑

j=1
a(i)

j b j

]
=

d∑
j=1

b2
j var

[
a(i)

j

]
=

d∑
j=1

b2
j = 1. (12.21)

In addition since a(1) ·b, · · · ,a(s) ·b are independent Gaussian random
variables, f(b) is a random vector from a s-dimensional spherical Gaus-
sian with unit variance in each direction, and via the Gaussian annulus
theorem one can prove the random projection theorem.

The random projection theorem establishes the fact that the probabil-
ity of the length of the projection of a single vector differing significantly
from its expectation value is exponentially small in s, namely the di-
mension of the target subspace. By a union bound the probability that
any of O(m2) pairwise differences ‖a(i) −a( j)‖ among the m vectors a(i)

differs significantly from their expected values is small, provided that
s ≥ 3logm/ f ϵ2. The random projection preserves all relative pairwise
distances between points in a set of m points with high probability, i.e.,
for any 0 < ϵ < 1 and any integer m, let s ≥ 3logm/ f ϵ2 with f the con-
stant number introduced above, for any set of m points in Rd the random
projection f : Rd →Rs defined has the property that for all pairs of points
a(i) and a( j), with probability at least 1−3/2m that,

(1−ϵ)
p

s
∥∥∥a(i) −a( j)

∥∥∥≤
∥∥∥f(a(i))− f(a( j))

∥∥∥≤ (1+ϵ)
p

s
∥∥∥a(i) −a( j)

∥∥∥ . (12.22)

This result is called the Johnson–Lindenstrauss (JL) lemma, which could
be directly proved by the random projection theorem. For the near-
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est neighbor problem, if the dataset has m1 points and m2 queries are
expected during the lifetime of the algorithm, take m = m1 + m2 and
project the dataset to a random s-dimensional space, for s as in the
Johnson–Lindenstrauss lemma. On receiving a query project the query
to the same subspace and compute nearby dataset points. The Johnson–
Lindenstrauss lemma tells that with high probability this will yield the
right answer. Note that the exponentially small in s probability is useful
in making s dependent on logm instead of m.

EXERCISE 19: Prove the JL lemma via the random projection theo-
rem, and prove the latter by the Gaussian annulus theorem.

EXERCISE 20: Generate 106 points on the surface of a 5d sphere and
create a histogram of all distances between the pairs of points.

XIII. SINGULAR VALUE DECOMPOSITION: BASIS

The “singular value decomposition (SVD)” method plays a fundamen-
tal role in many optimization problems in machine learning issues. The
introduction in this section is conceptual and is for practical use of the
SVD instead of the numerical algorithms behind the decomposition.9 For
any real matrix A ∈ Rm×d , the SVD of A is given by A = UΣ⃗VT, where
U ∈ Rm×d , Σ⃗ ∈ Rd×d ,V ∈ Rd×d . Moreover, the matrices V is always or-
thogonal in the sense that

∑d
j=1 VjkVjk′ = δkk′ ,1≤ k,k′ ≤ d, i.e., VTV= 1

and since the V is square it also indicates VVT = 1. On the other if m ≥ d
the columns of U are also orthogonal,

m∑
i=1

UikUik′ = δkk′ , 1≤ k,k′ ≤ d, (13.1)

i.e., UTU = 1. Furthermore for the situation m < d, the following two
possibilities emerge: (a) The σ j ’s for j = m+1 ∼ d are zero; or (b) The
corresponding columns of U are zero and the relation (13.1) holds for
1 ≤ k,k′ ≤ m. See Fig. 22 for the sketch of the SVD, here the matrix A is
assumed to have rank d. Instead if the rank of the matrix A has rank r,
then U ∈Rm×r , Σ⃗ ∈Rr×r ,V ∈Rd×r . Of course r ≤min{m,d}.

A ∈ R
m×d

U
∈
R
m
×
d

~Σ ∈ R
d×d

V
T
∈ R

d×d

Fig. 22: Sketch of the singular value decomposition.

The meanings of m and d could be demonstrated more obviously using
the set of linear equations,

a(1)
1 x1 +a(1)

2 x2 +·· ·+a(1)
d xd = b1,

a(2)
1 x1 +a(2)

2 x2 +·· ·+a(2)
d xd = b2,

...
a(m)

1 x1 +a(m)
2 x2 +·· ·+a(m)

d xd = bm,

(13.2)

i.e., there are totally d unknowns x1 ∼ xd with m equations. The above
set of linear equations could be rewritten in the matrix form Ax=b, with

A=


a(1)

1 a(1)
2 · · · a(1)

d
a(2)

1 a(2)
2 · · · a(2)

d
...

...
. . .

...
a(m)

1 a(m)
2 · · · a(m)

d

 , x=


x1
x2
...

xd

 , b=


b1
b2
...

bm

 . (13.3)

9A general reference on this topic is, G. Golub and Van C. Loan, Matrix Com-
putations, 2013, John Hopkins University.

The the situation m > d corresponds to that there are more equations
than unknowns, i.e., the system is over-determined, and the one with
m < d corresponds to that there are few equations than unknown, i.e., the
system is under-determined. If m < d, or if m = d but the equations are
degenerate (e.g., the problem contains the two equations 2x+ y = 1 and
4x+2y = 2), then there are effectively fewer equations than unknowns.
In this case there can be either no solution, or else more than one solution
vector x. In the latter event, the solution space consists of a particular
solution xp added to any linear combination of (typically) d−m vectors
(which are said to be in the null-space of the matrix A). The task of
finding the solution space of A then naturally involves the SVD of A. If
there are more equations than unknowns, m > d, there is in general no
solution vector x to equation (13.2), and it happens frequently, however,
that the best “compromise” solution is sought the one that comes closest
to satisfying all equations simultaneously. If closeness is defined in the
least-squares sense, i.e., that the sum of the squares of the differences
between the left and right hand sides of equation (13.2) be minimized,
then the over-determined linear problem reduces to a (usually) solvable
linear problem, called the linear least squares problem. The reduced set
of equations to be solved can be written as ATAx=ATb.

The equation Ax = b defines A as a linear mapping from an d-
dimensional vector space (for x) to an m-dimensional one (for b). But the
map might be able to reach only a lesser-dimensional subspace of the full
m-dimensional one. That subspace is called the range of the matrix A.
The dimension of the range is called the rank of A, denoted by rank(A).
The rank of A is equal to its number of linearly independent columns,
and also (perhaps less obviously) to its number of linearly independent
rows. If A is not identically zero, its rank is at least 1, and at most the
minimum of m and d, i.e., min(m,d), which is an elementary conclusion
from basic linear algebra. Sometimes there are nonzero vectors x that
are mapped to zero by the matrix A, i.e., Ax = 0. The space of such vec-
tors (a subspace of the d-dimensional space that the vector x lives in) is
called the null-space of A, and its dimension is called the nullity of the
matrix A, denoted by null(A), and that the nullity can have any value
from zero to d. The rank-nullity theorem in matrix algebra states that
for any matrix A, the rank plus the nullity is d (the number of columns),
i.e., rank(A)+null(A) = d. An important special case is m = d such that
the matrix A is square with dimension d. Moreover, if the rank of A is
d, its maximum possible value, then the nullity of A is zero, i.e., the A is
nonsingular and invertible: The equation Ax = b has a unique solution
for any vector b, and only the zero vector is mapped to zero. The relation
between the SVD and the null-space as well as the range of the matrix A
is that: SVD explicitly constructs the orthogonal bases for the null-space
and the range of a matrix. More specifically, the columns of U whose
same-numbered elements σ j are nonzero are an orthogonal set of basis
vectors that span the range, and the columns of V whose same-numbered
elements σ j are zero are an orthogonal basis for the null-space.

For the situation m = d, i.e., the matrix A is square, the matrices U
and V are also square, the SVD of A is simplified and its inverse is

A−1 =Vdiag
(
1/σ1,1/σ2, · · · ,1/σd

)
UT. (13.4)

Here the σ j ’s are actually the eigenvalues of the matrix A. One of the
main problems is that if one or several of the σ j ’s are zero or very small
near zero (It is necessary to remember that the condition number of a
square matrix A is defined as the ratio between its maximum and min-
imum eigenvalues (in magnitude), i.e., κ(A) = max j |σ j |/min j |σ j |, which
becomes infinite or very large if σd is zero or very close to zero). We
now discuss the solution of the equation Ax=b in the situation with A a
square matrix and b nonzero. The discussion is classified as,

(a) If the nonzero vector b is in the range of the matrix A, the singular
set of equations does have a solution x and in fact it has more than
one solution since any vector in the null-space x′ (any column of
V with a corresponding zero σ j) can be added to x in any linear
combination, e.g., x+x′ is still a solution of A(x+x′) = b. In fact
one has A(x+x′) = Ax+Ax′ = Ax = b. If we want to single out one
particular member of this solution set of vectors as a representative,
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we might want to pick the one with the smallest length ‖x‖2. Here
is how to find that vector using SVD: Simply replace 1/σ j by zero if
σ j = 0, and then obtain the solution via,10

x=Vdiag
(
1/σ1,1/σ2, · · · ,1/σd

)
UTb (13.5)

from right to left. The reason is as follows:

‖x+x′‖ =
∥∥∥VΣ⃗−1UTb+x′∥∥∥=

∥∥∥⃗Σ−1UTb+VTx′∥∥∥ , (13.6)

where the first equality follows from the SVD solution (13.5) and the
second and third ones from the orthogonality of the matrix V. If one
examines the two terms that make up the summation on the right
hand side, one immediately finds that the first one has nonzero j-
components only where σ j , 0 while the second one since x′ is in the
null-space has nonzero j-components only where σ j = 0. Thus the
minimum length is obtained when x′ = 0.

(b) On the other hand if b is not in the range of the singular matrix
A, then the set of Ax = b has no solution. However, the expression
(13.5) can still be used to construct an approximation “solution” vec-
tor x, and this vector x does not exactly solve the equation Ax = b.
But among all possible vectors x, it does the closest possible job in
the least-squares sense. In fact, one could prove that the expression
(13.5) minimizes the difference between the Ax and b, i.e., the (13.5)
is the argminx ‖Ax−b‖ (the quantity ‖Ax−b‖ is called the residual
of the solution). More specifically, suppose one modifies x of (13.5)
by adding some arbitrary x′, and then Ax−b is modified by adding
some b′ =Ax′. Obviously the b′ is in the range of the matrix A, and

‖Ax′−b+b′‖ =
∥∥∥(

UΣ⃗VT
)(

VΣ⃗−1UTb
)
−b+b′∥∥∥

=
∥∥∥(⃗
ΣΣ⃗−1 −1

)
UTb+UTb′∥∥∥ , (13.7)

with Σ⃗Σ⃗−1 −1 a diagonal matrix having nonzero j-components only
for σ j = 0, while UTb′ has nonzero j-components only for σ j , 0,
since b′ lies in the range of the matrix A. Therefore the minimum is
obtained for b′ = 0, i.e., the (13.5) minimizes the residual |Ax−b|.

XIV. SINGULAR VALUE DECOMPOSITION: BEST-FIT SCHEME

Fig. 23: Geometrical meaning of the SVD.

We discuss the geometrical meaning of the SVD as shown in Fig. 23 for
the 2-dimensional situation. The original space is spanned by the sphere
with axes v j having unit length. When acted with VT the axes are ro-
tated since the matrix V is orthogonal, however the relative relation be-
tween the two axes is unchanged. Next, when applying the matrix Σ⃗, the
axes are elongated or shrank according to the magnitude of the singular
values, consequently the sphere becomes an elliptic, here σ1 > σ2 > 0 is
assumed. The action of the matrix U rotates the elliptic again and in the
mean while the original axes v j becomes σ ju j , since the SVD of the ma-
trix A could be rewritten as AV = VΣ⃗, or Av j = σ ju j , in component. In
other words the matrix A written in the SVD form transforms the v j into
σ ju j , both of which are orthogonal, i.e., v1 ⊥ v2 and u1 ⊥ u2. Moreover,

10Eq. (13.5) is essentially very general in the sense that if no σ j ’s are zero, it
solves a non-singular system of linear equations. If some σ j ’s are zero and their
reciprocals are made zero (i.e., are zeroized), then it gives a “best” solution, and
either the one of shortest length among many, or the one of minimum residual
when no exact solution exists. Eq. (13.4) with the singular 1/σ j zeroized is called
the Moore–Penrose inverse or the pseudo-inverse of the matrix A, denoted as A+.

one also has ATu j = σ jv j , by combining these two one essentially ob-
tains ATAv j =σ jATu j =σ2

j v j . Using the vectors ui and vi the SVD of A

is written in the form, A=∑d
i=1σiuivT

i , with ui ∈Rm and vi ∈Rd , where
some of the σi ’s maybe zero. The shape of the matrix constructed on the
right hand side is Rm×d , and the σi ’s play the role of the weights of the
approximation. If a small number s is used instead of d, we obtain the
s-rank approximation of A namely, Aeff =As ≈∑s

i=1σiuivT
i . The rows of

As are the projections of the rows of A onto the subspace spanned by the
first r singular vectors of A.

The SVD for matrix A could be rewritten to obtain the component of
the matrix A as a(i)

j = ∑d
k=1σkUikVjk. For squared matrix A, we then

have A = ∑d
j=1σ ju juT

j . If one encounters a situation where most of the
singular values σ j of a matrix A are very small (in magnitude), then the
A will be well approximated by only a few terms in the above summation,
i.e., r → d with r ¿ d, indicating that one has to store only a few columns
of U and of V (with the same k indices) and one could be able to recover
with good accuracy the whole matrix.

distance

a
(i)

v

projection

Fig. 24: Projection of the point a onto the line
through the origin in the direction of v.

It is the main mathe-
matical principal behinds
the principal component
analysis, and the corre-
sponding approximation
is called the best-fit sub-
space. The SVD is very
useful in this sense it
could find a low-rank ap-
proximation to A, and for
any s the SVD of A gives
the best rank-s approx-
imation of A in a well-
defined sense. Let’s dis-
cuss it in more details.
Consider projecting a point a(i) = (a(i)

1 , · · · ,a(i)
d )T ∈Rd onto a line through

the origin, see Fig. 24. Then

a(i),2
1 +·· ·+a(i),2

d =[length of projection]2

+ [distance of point to line]2, (14.1)

consequently,

[distance of point to line]2 =− [length of projection]2

+a(i),2
1 +·· ·+a(i),2

d . (14.2)

Since
∑m

i=1(a(i),2
1 +a(i),2

2 +·· ·+a(i),2
d ) is a constant independent of the line,

minimizing the sum of squares of the distance to the line is equivalent
to maximizing the sum of the squares of the lengths of the projections
onto the line. Similarly for the best-fit subspace, maximizing the sum of
the squared lengths of the projections onto the subspace minimizes the
sum of the squared distances to the subspace. Thus we have two inter-
pretations of the best-fit subspace. The first one is that it minimizes the
sum of squared distances of the data points to it. This interpretation and
its use are akin to the notion of least-squares method. The second inter-
pretation of best-fit subspace is that it maximizes the sum of projections
squared of the data points on it. This tells that the subspace contains the
maximum content of data among all subspaces of the same dimension.

Consider the rows of A as m points in a d-dimensional space. Consider
the best-fit line through the origin, and let v be a unit vector along this
line. The length of the projection of a(i), the ith row of A (by transposing),
onto v is simply as ‖a(i) ·v‖. From this we see that the sum of the squared
lengths of the projections is ‖Av‖2. The best-fit line is the one maximiz-
ing ‖Av‖2 and hence minimizing the sum of the squared distances of the
points to the line. With this in mind, the first singular vector of A could
be defined as,

v1 = argmax
‖v‖=1

‖Av‖. (14.3)
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The value σ1(A) = ‖Av1‖ is the the first singular value of A. Note that
σ2

1 = ∑m
i=1(a(i) ·v1)2 is the sum of the squared lengths of the projections

of the points onto the line determined by v1. If the data points were all
either on a line or close to a line, intuitively v1 should give us the di-
rection of that line. It is possible that data points are not close to one
line, but lie close to a two-dimensional subspace or more generally a low-
dimensional space. Suppose we have an algorithm for finding v1. How
do we use this to find the best-fit two-dimensional plane or more gen-
erally the best-fit r-dimensional space? We have the following greedy
algorithm: The second singular vector v2 is defined by the best-fit line
perpendicular to v1, v2 = argmaxv⊥v1,‖v‖=1 ‖Av‖. The σ2(A) = ‖Av2‖ is
called the second singular value of the matrix A. The third singular vec-
tor v3 and the third singular value are defined very similarly, namely
v3 = argmaxv⊥v1,v2,‖v‖=1 ‖Av‖, and σ3(A)= ‖Av3‖.

Note that the d-dimensional vector Avi is a list of lengths (with signs)
of the projections of the rows of A onto vi . Think of ‖Avi‖ = σi(A) as
the component of the matrix A along vi . For this interpretation to make
sense, it should be true that adding up the squares of the components of
A along each of the vi gives the square of the “whole content of A”. This
is indeed the situation and is the matrix analogy of decomposing a vector
into its components along orthogonal directions. Consider one row a( j),
for instance, since v1,v2, · · · ,vd span the space of all rows of A, one has
a( j) ·v= 0 for all v perpendicular to v1,v2, · · · ,vd . Thus for each row a( j),
the

∑d
i=1(a( j) ·vi)2 = ‖a( j)‖2. Summing over all row j, one obtains,

m∑
j=1

∥∥∥a( j)
∥∥∥2 =

m∑
j=1

d∑
i=1

(
a( j) ·vi

)2 =
d∑

i=1

m∑
j=1

(
a( j) ·vi

)2

=
d∑

i=1
‖Avi‖2 =

d∑
i=1

σ2
i (A). (14.4)

On the other hand,
m∑

j=1
‖a( j)‖2 =

m∑
j=1

d∑
k=1

a( j),2
k , (14.5)

the sum of squares of all entries of A. Thus the sum of squares of the
singular values of A is indeed the square of the “whole content of A”, the
sum of squares of all the entries. This value is the Frobenius norm of
the matrix A, i.e., ‖A‖F. The vectors v1,v2, · · · ,vd are the right singular
vectors of the matrix A, and from the above discussion ‖A‖2

F = ∑d
i=1σ

2
i .

The vectors Avi form a fundamental set of vectors and we normalize
them to length 1 by ui = vi /σi(A). In fact the ui similarly maximizes
‖uTA‖ over all u perpendicular to u1, · · · ,ui−1. These vectors are the left
singular vectors, which are also orthogonal.

Denote i the smallest integer such that ui is not orthogonal to some
other u j and assume uT

i u j = δ > 0. Next one defines the vector v′
i =

(vi +ϵv j)/‖vi +ϵv j‖ by ϵ> 0. Consequently Av′
i = (σiui +ϵσ ju j)/

√
1+ϵ2,

which has length at least as large as its component along ui ,

uT
i

(
σiui +ϵσ ju j√

1+ϵ2

)
=σi +ϵδσ j√

1+ϵ2
>σi +ϵδσ j −

1
2
ϵ2σi −

1
2
ϵ3δσ j , (14.6)

which is greater than σi for sufficiently small ϵ, and this is a contradic-
tion since vi + ϵv j is orthogonal to v1,v2, · · · ,vi−1 due to j > i. Using
the fact that all the right singular vectors are also orthogonal with each
other, we calculate the residual of the SVD approximation. By denoting
v the top singular vector of A−As and expressing it as a combination of
v1,v2, · · · ,vd , i.e., v=∑d

j=1 c jv j , one has

‖(A−As)v‖2 =
∥∥∥∥∥ d∑

i=s+1
σiuivT

i

d∑
j=1

c jv j

∥∥∥∥∥
2

=
∥∥∥∥∥ d∑

i=s+1

d∑
j=1

σi c juiδi j

∥∥∥∥∥
2

=
∥∥∥∥∥ d∑

i=s+1
ciσiui

∥∥∥∥∥
2

=
d∑

i=s+1
c2

i σ
2
i . (14.7)

The v maximizing this last quantity subject to the constraint that ‖v‖2 =∑d
i=1 c2

i = 1 occurs when cs+1 = 1 and the rest of the coefficients are zero.

Consequently
‖A−As‖2

2 =σ2
s+1. (14.8)

Very similarly one can prove that for the 2-norm of a matrix that ‖A−
As‖2 ≤ ‖A−B‖2, where B is a matrix of rank at most s. The 2-norm for a
matrix is simply defined as ‖A‖2 =max‖x‖≤1 ‖Ax‖ =σ1(A).

EXERCISE 21: Prove for any matrix A that σs ≤ ‖A‖F/
p

s and there
exists a matrix B of rank at most s such that ‖A−B‖2 ≤ ‖A‖F/

p
s.

If the number of the data points m is large while that of the dimension
d is reasonable, the original computing of the SVD of the matrix A ∈
Rm×d is perhaps time consuming. We can construct another matrix B by
B=ATA ∈Rd×d , and use the orthogonality of the ui ’s to make progress.
More specifically,

B=ATA=
(∑

i
σiviuT

i

)(∑
j
σ ju jvT

j

)
=∑

i
σ2

i vivT
i . (14.9)

The matrix B is square and symmetric, and has the same left-singular
and right-singular vectors. Particularly, one has Bv j =

∑
i σ

2
i vivT

i v j =
σ2

j v j , i.e., the left singular vector v j is the eigenvector of the matrix B
corresponding to the eigenvalue σ2

j . If the matrix A is itself square and
symmetric, it will have the same right-singular and left-singular vectors,
and in this case there is no need to computing the matrix B. Next, we
calculate the square of the matrix B,

B2 =
(∑

i
σ2

i vivT
i

)(∑
j
σ2

j v jvT
j

)
=∑

i, j
σ2

i σ
2
j vivT

i v jvT
j =∑

i
σ4

i vivT
i . (14.10)

In computing the sth power of the matrix B, all the cross-product terms
are zero, and Bs = ∑d

i=1σ
2s
i vivT

i . If σ1 > σ2, i.e., the largest singular
value is unique, then the first term in the summation dominates and
Bs →σ2s

1 v1vT
1 . This means a close estimation on the first singular vector

v1 can be computed by simply taking the first column of Bs and normal-
izing it to be a unit vector.

The above scheme is useful only in principal. For example, assume
that the size of A is very large, e.g., a 106×106 matrix with 108 non-zero
elements. Although A in this case is a sparse matrix it does not mean
the square of A should also be sparse, and in the even worse case the
B = A2 may have all 1012 elements non-zero. It is impossible to even
write down B, let alone compute the product B2. Even if A is moderate
in size, computing matrix products is costly in time and space. Instead
of computing Bs, select randomly a vector x and compute the product
Bsx=ATA · · ·ATAx from right to left. The vector x could be expressed in
terms of the singular vectors of B augmented to a full orthogonal basis as
x=∑d

i=1 civi assuming the last few singular values of A are zero. Then,

Bsx≈
(
σ2s

1 v1vT
1

)(
d∑

i=1
civi

)
=σ2s

1 c1v1. (14.11)

Normalizing the resulting vector gives the first singular vector of A. In
order to compute s singular vectors, one selects randomly a vector x and
finds an orthonomal basis of the space spanned by x,Ax,Ax2, · · · ,As−1x.
Then compute A times each of the basis vectors, and find and orthonomal
basis for the space spanned by the resulting vectors. Intuitively, one
has applied A to a subspace rather than a single vector. One repeatedly
applies A to the subspace, calculating an orthonomal basis after each
application to prevent the subspace collapsing to the one-dimensional
subsapce spanned by the first singular vector. The process essentially
converges to the first s singular vectors.

EXERCISE 22: If A ∈ Rm×d is a matrix with nonnegative elements
and σ1(A) = xTAy = ∑

i, j a(i)
j x(i) yj with ‖x‖ = ‖y‖ = 1. Zero out all x(i)

less than 1/2
p

m and all yj less than 1/2
p

d. Estimate the loss.
EXERCISE 23: Use the power method to computer the SVD of the

matrix A with a(1)
1 = 1,a(1)

2 = 2,a(2)
1 = 3 and a(2)

2 = 4.
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